已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of Defects in Rice Seeds Using Machine Vision

色调 人工智能 细菌 模式识别(心理学) 发芽 数学 机器视觉 图像处理 主成分分析 计算机科学 图像(数学) 园艺 生物 数学分析
作者
Cheng Fang,Yuxuan Ying,Y. B. Li
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:49 (6): 1929-1934 被引量:16
标识
DOI:10.13031/2013.22272
摘要

Three image-processing algorithms were developed to detect external defects of rice seeds such as germ, disease, and incompletely closed glumes. The rice seeds used for this study involved five varieties: Jinyou402, Shanyou10, Zhongyou207, Jiayou, and IIyou. Images of the samples with both black and white backgrounds were acquired with a color machine vision system. Each original image was preprocessed to create a mask for the seed region. For judging the presence of germ, 16 contour features were extracted and analyzed using principal components analysis. In addition to this, four back-propagation neural networks were created and trained with typical data sets of the four varieties. The algorithm developed for recognition of germ achieved an average accuracy of 99.4% for normal seeds and 91.9% for germinated seeds on panicle. The mean hue value and its deviation of the seed region determined with a block method were extracted as features of disease recognition. The corresponding algorithm developed for inspecting diseased seeds based on color features achieved an accuracy of 92.1% for normal seeds, 94.8% for spot-diseased seeds, and 91.1% for severely diseased seeds. Using radon transform, the group number of post-processing images proved to be a good indicator of incompletely closed glumes. The relevant algorithm was developed and achieved an accuracy of 98.6% for normal seeds, 98.6% for seeds with fine fissures, and 99.2% for seeds with unclosed glumes. The results showed that the three algorithms achieved desired accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhjjj发布了新的文献求助10
刚刚
yue完成签到 ,获得积分10
刚刚
科研通AI6应助tosaka凛采纳,获得10
1秒前
夏紊完成签到 ,获得积分10
1秒前
1秒前
赘婿应助清秋夜露白采纳,获得10
1秒前
shy完成签到,获得积分20
3秒前
3秒前
5秒前
英勇可乐完成签到,获得积分10
5秒前
橘子猫发布了新的文献求助10
5秒前
6秒前
7秒前
yu完成签到,获得积分10
7秒前
皮皮团发布了新的文献求助10
8秒前
Akim应助李希采纳,获得10
8秒前
黑猫乾杯应助Mask采纳,获得10
9秒前
尚尚发布了新的文献求助10
9秒前
FashionBoy应助紫菜采纳,获得10
9秒前
秋殤发布了新的文献求助10
10秒前
淡淡尔烟完成签到,获得积分10
10秒前
12秒前
13秒前
13秒前
朴素的眼神完成签到,获得积分10
13秒前
13秒前
14秒前
璀璨的孤狼完成签到 ,获得积分10
15秒前
momo完成签到,获得积分20
16秒前
16秒前
16秒前
Ttttsyu完成签到,获得积分10
16秒前
nicholas发布了新的文献求助10
17秒前
柔弱河马发布了新的文献求助10
18秒前
18秒前
Zhang完成签到 ,获得积分10
19秒前
mtt发布了新的文献求助10
20秒前
momo发布了新的文献求助10
21秒前
hulian发布了新的文献求助10
21秒前
SKF完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558