亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Detection of Defects in Rice Seeds Using Machine Vision

色调 人工智能 细菌 模式识别(心理学) 发芽 数学 机器视觉 图像处理 主成分分析 计算机科学 图像(数学) 园艺 生物 数学分析
作者
Cheng Fang,Yuxuan Ying,Y. B. Li
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:49 (6): 1929-1934 被引量:16
标识
DOI:10.13031/2013.22272
摘要

Three image-processing algorithms were developed to detect external defects of rice seeds such as germ, disease, and incompletely closed glumes. The rice seeds used for this study involved five varieties: Jinyou402, Shanyou10, Zhongyou207, Jiayou, and IIyou. Images of the samples with both black and white backgrounds were acquired with a color machine vision system. Each original image was preprocessed to create a mask for the seed region. For judging the presence of germ, 16 contour features were extracted and analyzed using principal components analysis. In addition to this, four back-propagation neural networks were created and trained with typical data sets of the four varieties. The algorithm developed for recognition of germ achieved an average accuracy of 99.4% for normal seeds and 91.9% for germinated seeds on panicle. The mean hue value and its deviation of the seed region determined with a block method were extracted as features of disease recognition. The corresponding algorithm developed for inspecting diseased seeds based on color features achieved an accuracy of 92.1% for normal seeds, 94.8% for spot-diseased seeds, and 91.1% for severely diseased seeds. Using radon transform, the group number of post-processing images proved to be a good indicator of incompletely closed glumes. The relevant algorithm was developed and achieved an accuracy of 98.6% for normal seeds, 98.6% for seeds with fine fissures, and 99.2% for seeds with unclosed glumes. The results showed that the three algorithms achieved desired accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Criminology34发布了新的文献求助100
7秒前
所所应助lawang采纳,获得10
9秒前
华仔应助lawang采纳,获得10
9秒前
情怀应助lawang采纳,获得10
9秒前
无花果应助lawang采纳,获得10
9秒前
酷波er应助lawang采纳,获得10
9秒前
今后应助lawang采纳,获得10
9秒前
丘比特应助lawang采纳,获得10
9秒前
Jasper应助lawang采纳,获得10
9秒前
善学以致用应助lawang采纳,获得10
9秒前
英俊的铭应助lawang采纳,获得10
9秒前
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
23秒前
25秒前
chenjy202303发布了新的文献求助20
30秒前
Endymion发布了新的文献求助10
30秒前
今后应助Endymion采纳,获得10
34秒前
量子星尘发布了新的文献求助10
57秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957