Detection of Defects in Rice Seeds Using Machine Vision

色调 人工智能 细菌 模式识别(心理学) 发芽 数学 机器视觉 图像处理 主成分分析 计算机科学 图像(数学) 园艺 生物 数学分析
作者
Cheng Fang,Yuxuan Ying,Y. B. Li
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:49 (6): 1929-1934 被引量:16
标识
DOI:10.13031/2013.22272
摘要

Three image-processing algorithms were developed to detect external defects of rice seeds such as germ, disease, and incompletely closed glumes. The rice seeds used for this study involved five varieties: Jinyou402, Shanyou10, Zhongyou207, Jiayou, and IIyou. Images of the samples with both black and white backgrounds were acquired with a color machine vision system. Each original image was preprocessed to create a mask for the seed region. For judging the presence of germ, 16 contour features were extracted and analyzed using principal components analysis. In addition to this, four back-propagation neural networks were created and trained with typical data sets of the four varieties. The algorithm developed for recognition of germ achieved an average accuracy of 99.4% for normal seeds and 91.9% for germinated seeds on panicle. The mean hue value and its deviation of the seed region determined with a block method were extracted as features of disease recognition. The corresponding algorithm developed for inspecting diseased seeds based on color features achieved an accuracy of 92.1% for normal seeds, 94.8% for spot-diseased seeds, and 91.1% for severely diseased seeds. Using radon transform, the group number of post-processing images proved to be a good indicator of incompletely closed glumes. The relevant algorithm was developed and achieved an accuracy of 98.6% for normal seeds, 98.6% for seeds with fine fissures, and 99.2% for seeds with unclosed glumes. The results showed that the three algorithms achieved desired accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明月清风发布了新的文献求助10
刚刚
迷人的沛山完成签到 ,获得积分10
刚刚
叶叶叶完成签到,获得积分10
刚刚
小路完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
zzz发布了新的文献求助20
4秒前
阡陌完成签到,获得积分10
5秒前
6秒前
wanci应助jasmineyy采纳,获得10
6秒前
大模型应助34882738采纳,获得10
8秒前
Ab发布了新的文献求助10
8秒前
云鹤发布了新的文献求助10
8秒前
8秒前
SYLH应助风中如松采纳,获得10
8秒前
朝朝暮暮关注了科研通微信公众号
9秒前
wanci应助wdw2501采纳,获得10
10秒前
小程同学发布了新的文献求助10
10秒前
朱子完成签到 ,获得积分10
10秒前
10秒前
华仔应助人类智力巅峰采纳,获得10
11秒前
11秒前
严格发布了新的文献求助10
12秒前
orixero应助yy采纳,获得10
13秒前
14秒前
zjfmmu完成签到,获得积分10
14秒前
我睡觉的时候不困完成签到,获得积分10
14秒前
SXM发布了新的文献求助10
15秒前
16秒前
yin应助神麒小雪采纳,获得10
17秒前
李健应助三木采纳,获得10
18秒前
18秒前
1970223492发布了新的文献求助10
18秒前
王大帅哥完成签到,获得积分10
19秒前
20秒前
Young完成签到 ,获得积分10
20秒前
共享精神应助xuan采纳,获得10
20秒前
20秒前
今后应助大意的安白采纳,获得10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470472
求助须知:如何正确求助?哪些是违规求助? 3063446
关于积分的说明 9083480
捐赠科研通 2753873
什么是DOI,文献DOI怎么找? 1511131
邀请新用户注册赠送积分活动 698303
科研通“疑难数据库(出版商)”最低求助积分说明 698147