已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detection of Defects in Rice Seeds Using Machine Vision

色调 人工智能 细菌 模式识别(心理学) 发芽 数学 机器视觉 图像处理 主成分分析 计算机科学 图像(数学) 园艺 生物 数学分析
作者
Cheng Fang,Yuxuan Ying,Y. B. Li
出处
期刊:Transactions of the ASABE [American Society of Agricultural and Biological Engineers]
卷期号:49 (6): 1929-1934 被引量:16
标识
DOI:10.13031/2013.22272
摘要

Three image-processing algorithms were developed to detect external defects of rice seeds such as germ, disease, and incompletely closed glumes. The rice seeds used for this study involved five varieties: Jinyou402, Shanyou10, Zhongyou207, Jiayou, and IIyou. Images of the samples with both black and white backgrounds were acquired with a color machine vision system. Each original image was preprocessed to create a mask for the seed region. For judging the presence of germ, 16 contour features were extracted and analyzed using principal components analysis. In addition to this, four back-propagation neural networks were created and trained with typical data sets of the four varieties. The algorithm developed for recognition of germ achieved an average accuracy of 99.4% for normal seeds and 91.9% for germinated seeds on panicle. The mean hue value and its deviation of the seed region determined with a block method were extracted as features of disease recognition. The corresponding algorithm developed for inspecting diseased seeds based on color features achieved an accuracy of 92.1% for normal seeds, 94.8% for spot-diseased seeds, and 91.1% for severely diseased seeds. Using radon transform, the group number of post-processing images proved to be a good indicator of incompletely closed glumes. The relevant algorithm was developed and achieved an accuracy of 98.6% for normal seeds, 98.6% for seeds with fine fissures, and 99.2% for seeds with unclosed glumes. The results showed that the three algorithms achieved desired accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
HI完成签到 ,获得积分10
5秒前
5秒前
wyy发布了新的文献求助10
7秒前
境由心生发布了新的文献求助10
8秒前
8秒前
老仙翁发布了新的文献求助10
11秒前
wyy完成签到,获得积分10
12秒前
传奇3应助XXH采纳,获得10
14秒前
感动的醉波完成签到,获得积分10
15秒前
15秒前
18秒前
境由心生完成签到,获得积分10
21秒前
sherrydeyu发布了新的文献求助10
22秒前
Mr_Qz发布了新的文献求助10
22秒前
24秒前
26秒前
谨慎天问发布了新的文献求助10
28秒前
ldgsd完成签到,获得积分10
29秒前
66发布了新的文献求助10
31秒前
NexusExplorer应助sherrydeyu采纳,获得10
34秒前
谨慎天问完成签到,获得积分10
35秒前
无敌小宽哥完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
36秒前
SciGPT应助66采纳,获得10
36秒前
丁鹏笑完成签到 ,获得积分0
39秒前
wanci应助齐嘉懿采纳,获得10
41秒前
桃铁完成签到,获得积分10
44秒前
49秒前
50秒前
52秒前
111完成签到,获得积分10
53秒前
22222发布了新的文献求助10
53秒前
ivy发布了新的文献求助30
53秒前
江河湖海完成签到 ,获得积分10
55秒前
齐嘉懿发布了新的文献求助10
55秒前
56秒前
58秒前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959927
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128074
捐赠科研通 3238096
什么是DOI,文献DOI怎么找? 1789502
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803024