Is it possible to automatically distinguish resting EEG data of normal elderly vs. mild cognitive impairment subjects with high degree of accuracy?

脑电图 认知障碍 人工智能 二元分类 模式识别(心理学) 工件(错误) 计算机科学 医学 听力学 疾病 内科学 精神科 支持向量机
作者
Paolo Maria Rossini,Massimo Buscema,Massimiliano Capriotti,Enzo Grossi,Guido Rodriguez,Claudio Del Percio,Claudio Babiloni
出处
期刊:Clinical Neurophysiology [Elsevier]
卷期号:119 (7): 1534-1545 被引量:94
标识
DOI:10.1016/j.clinph.2008.03.026
摘要

It has been shown that a new procedure (implicit function as squashing time, IFAST) based on artificial neural networks (ANNs) is able to compress eyes-closed resting electroencephalographic (EEG) data into spatial invariants of the instant voltage distributions for an automatic classification of mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects with classification accuracy of individual subjects higher than 92%.Here we tested the hypothesis that this is the case also for the classification of individual normal elderly (Nold) vs. MCI subjects, an important issue for the screening of large populations at high risk of AD. Eyes-closed resting EEG data (10-20 electrode montage) were recorded in 171 Nold and in 115 amnesic MCI subjects. The data inputs for the classification by IFAST were the weights of the connections within a nonlinear auto-associative ANN trained to generate the instant voltage distributions of 60-s artifact-free EEG data.The most relevant features were selected and coincidently the dataset was split into two halves for the final binary classification (training and testing) performed by a supervised ANN. The classification of the individual Nold and MCI subjects reached 95.87% of sensitivity and 91.06% of specificity (93.46% of accuracy).These results indicate that IFAST can reliably distinguish eyes-closed resting EEG in individual Nold and MCI subjects.IFAST may be used for large-scale periodic screening of large populations at risk of AD and personalized care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yhl完成签到,获得积分20
刚刚
皮皮发布了新的文献求助10
1秒前
圆圆的脑袋应助SCISSH采纳,获得10
2秒前
阳光的雁山完成签到,获得积分10
2秒前
霖宸羽完成签到,获得积分10
3秒前
5秒前
无奈的代珊完成签到 ,获得积分10
5秒前
6秒前
6秒前
搜集达人应助糊涂的小伙采纳,获得10
6秒前
mmd完成签到 ,获得积分10
7秒前
7秒前
Lily完成签到,获得积分10
8秒前
温言发布了新的文献求助10
9秒前
9秒前
Roy完成签到,获得积分10
9秒前
永远少年完成签到,获得积分10
11秒前
niu1发布了新的文献求助10
11秒前
12秒前
Danny完成签到,获得积分10
12秒前
Lsx完成签到 ,获得积分10
12秒前
又胖了发布了新的文献求助10
13秒前
13秒前
小小飞发布了新的文献求助20
14秒前
14秒前
14秒前
15秒前
wanci应助NorthWang采纳,获得10
15秒前
zhen完成签到,获得积分10
17秒前
ns发布了新的文献求助30
18秒前
19秒前
逐风完成签到,获得积分10
19秒前
无奈的酒窝完成签到,获得积分10
20秒前
20秒前
21秒前
blingbling发布了新的文献求助10
21秒前
今后应助SherlockLiu采纳,获得30
23秒前
daniel发布了新的文献求助10
23秒前
Jason应助温言采纳,获得20
24秒前
逐风发布了新的文献求助30
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808