Proteomic analysis of Chlorella vulgaris: potential targets for enhanced lipid accumulation.

脂质代谢 化学 小球藻 脂滴 脂类学 细胞生物学
作者
Michael T. Guarnieri,Ambarish Nag,Shihui Yang,Philip T. Pienkos
出处
期刊:Journal of Proteomics [Elsevier BV]
卷期号:93: 245-253 被引量:82
标识
DOI:10.1016/j.jprot.2013.05.025
摘要

Abstract Oleaginous microalgae are capable of producing large quantities of fatty acids and triacylglycerides. As such, they are promising feedstocks for the production of biofuels and bioproducts. Genetic strain-engineering strategies offer a means to accelerate the commercialization of algal biofuels by improving the rate and total accumulation of microalgal lipids. However, the industrial potential of these organisms remains to be met, largely due to the incomplete knowledgebase surrounding the mechanisms governing the induction of algal lipid biosynthesis. Such strategies require further elucidation of genes and gene products controlling algal lipid accumulation. In this study, we have set out to examine these mechanisms and identify novel strain-engineering targets in the oleaginous microalga, Chlorella vulgaris . Comparative shotgun proteomic analyses have identified a number of novel targets, including previously unidentified transcription factors and proteins involved in cell signaling and cell cycle regulation. These results lay the foundation for strain-improvement strategies and demonstrate the power of translational proteomic analysis. Biological significance We have applied label-free, comparative shotgun proteomic analyses, via a transcriptome-to-proteome pipeline, in order to examine the nitrogen deprivation response in the oleaginous microalga, C. vulgaris . Herein, we identify potential targets for strain-engineering strategies targeting enhanced lipid accumulation for algal biofuels applications. Among the identified targets are proteins involved in transcriptional regulation, lipid biosynthesis, cell signaling and cell cycle progression. This article is part of a Special Issue entitled: Translational Plant Proteomics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助华天九四采纳,获得10
刚刚
刚刚
刚刚
万能图书馆应助XIaoLuzi采纳,获得10
1秒前
小橘子2022发布了新的文献求助10
1秒前
1秒前
张思涵发布了新的文献求助10
3秒前
共享精神应助GCS12采纳,获得10
6秒前
6秒前
思源应助W~舞采纳,获得10
7秒前
An发布了新的文献求助10
8秒前
汉堡包应助罗小黑采纳,获得10
8秒前
9秒前
9秒前
清爽觅山发布了新的文献求助10
10秒前
11秒前
11秒前
自然白安发布了新的文献求助10
11秒前
12秒前
pysa发布了新的文献求助10
12秒前
香蕉觅云应助明亮代丝采纳,获得10
12秒前
13秒前
嘀嗒完成签到 ,获得积分10
14秒前
14秒前
Ode发布了新的文献求助10
15秒前
orixero应助秋子采纳,获得10
15秒前
16秒前
16秒前
小蘑菇应助Frankenstein采纳,获得30
17秒前
JojoRD发布了新的文献求助10
18秒前
111完成签到 ,获得积分10
18秒前
19秒前
GCS12发布了新的文献求助10
19秒前
仓鼠飞轮发布了新的文献求助10
20秒前
高高亿先发布了新的文献求助20
22秒前
zz完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727785
求助须知:如何正确求助?哪些是违规求助? 3272940
关于积分的说明 9978984
捐赠科研通 2988317
什么是DOI,文献DOI怎么找? 1639522
邀请新用户注册赠送积分活动 778780
科研通“疑难数据库(出版商)”最低求助积分说明 747817