肿瘤坏死因子α
下调和上调
MAPK/ERK通路
一氧化氮
NF-κB
化学
脂多糖
细胞因子
一氧化氮合酶
信号转导
NFKB1型
炎症
药理学
分子生物学
生物
生物化学
免疫学
转录因子
有机化学
基因
作者
Yuna Pyee,Hwa‐Jin Chung,Tae Jun Choi,Hyen Joo Park,Ji‐Young Hong,Ju Sun Kim,Sam Sik Kang,Sang Kook Lee
摘要
The anti-inflammatory activity of handelin (1), a guaianolide dimer from Chrysanthemum boreale flowers, was evaluated in vivo, and the effects on mediators nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) and the nuclear factor-κB (NF-κB) and ERK/JNK signaling pathways were investigated in vitro. Compound 1 inhibited lipopolysaccharide (LPS)-induced production of NO and PGE2 in cultured mouse macrophage RAW 264.7 cells. The suppression of NO and PGE2 production by 1 was correlated with the downregulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Compound 1 also suppressed the induction of pro-inflammatory cytokines TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells. To further clarify the transcriptional regulatory pathway in the expression of iNOS and COX-2 by 1, the role of NF-κB was determined in RAW 264.7 cells. Compound 1 inhibits the binding activity of NF-κB into the nuclear proteins. The transcriptional activity of NF-κB stimulated with LPS was also suppressed by 1, which coincided with the inhibition of IκB degradation. Compound 1 also suppressed the activation of mitogen-activated protein kinases, including ERK and JNK signaling. In addition, the LPS-stimulated upregulation of miRNA-155 expression was suppressed by 1. The oral administration of 1 inhibited acute inflammation in carrageenan-induced paw and 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced ear edema models. The serum level of IL-1β was also inhibited by 1 in a carrageenan-induced paw edema model. These findings suggest that the suppression of NF-κB activation and pro-inflammatory cytokine production may be a plausible mechanism of action for the anti-inflammatory activity of handelin.
科研通智能强力驱动
Strongly Powered by AbleSci AI