Some Modified Activation Functions of Hyperbolic Tangent (TanH) Activation Function for Artificial Neural Networks

双曲函数 乙状窦函数 激活函数 一般化 切线 人工神经网络 计算机科学 数学 应用数学 人工智能 数学分析 几何学
作者
Arvind Kumar,Sartaj Singh Sodhi
出处
期刊:Advances in intelligent systems and computing 卷期号:: 369-392
标识
DOI:10.1007/978-981-99-0550-8_30
摘要

There are a number of Activation Functions (AFs) present in the neural network. Among them, the hyperbolic tangent (TanH) and log sigmoid are commonly used AFs. The TanH AF is better when compared to logsigmoid. On all the numbers of hidden neurons or nodes, logsigmoid and TanH do not have shown better results or performance. For this purpose, we have presented six modified TanH with the help of a generalization of TanH AF. When logsigmoid and TanH do not show satisfactory results, then we may achieve better results with the help of the modified TanH proposed by us. In some situations, the modified TanH gives equal results as TanH, so we may also use the modified TanH for the verification of TanH results. Also, all these AFs are as powerful as logsigmoid and TanH. Like logsig and TanH, all of our modified TanH have four properties. First, these AFs are bounded range; second, all these are zero centered; according to the third and fourth properties, they are continuously differentiable and have a smooth S-shape. Due to all these properties, we can use all of the modified TanH for solving nonlinear problems. We have taken seven datasets for checking these AFs. First of all, we check the performance of the iris dataset (on 150 samples) using SCG, LM, and BR training algorithms. After that, we tested this on cancer (699 samples), glass (214 samples), body fat (252 samples), chemical (498 samples), wine (178 samples), and ovarian (216 samples) using SCG training algorithm for more satisfaction of the results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔qiao发布了新的文献求助30
2秒前
WZ0904发布了新的文献求助10
3秒前
poegtam完成签到,获得积分10
4秒前
大胆盼兰发布了新的文献求助10
5秒前
wuyan204完成签到 ,获得积分10
6秒前
windcreator完成签到,获得积分10
6秒前
redondo5完成签到,获得积分0
6秒前
wangrswjx完成签到 ,获得积分10
6秒前
科研通AI5应助su采纳,获得10
6秒前
9秒前
11秒前
小二郎应助嘻嘻采纳,获得10
11秒前
yun完成签到 ,获得积分10
12秒前
12秒前
14秒前
健忘曼冬发布了新的文献求助10
14秒前
redondo完成签到,获得积分10
14秒前
momo完成签到,获得积分10
15秒前
希望天下0贩的0应助meng采纳,获得10
16秒前
龙歪歪发布了新的文献求助10
17秒前
17秒前
暮城完成签到,获得积分10
17秒前
18秒前
云墨完成签到 ,获得积分10
18秒前
20秒前
21秒前
Akim应助caoyy采纳,获得10
21秒前
22秒前
科研通AI2S应助DreamMaker采纳,获得10
22秒前
25秒前
zho发布了新的文献求助30
25秒前
25秒前
ywang发布了新的文献求助10
25秒前
ZD小草完成签到 ,获得积分10
26秒前
健忘曼冬完成签到,获得积分10
27秒前
hkl1542发布了新的文献求助50
28秒前
29秒前
30秒前
KYN完成签到,获得积分10
31秒前
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824