Federated and Online Dynamic Spectrum Access for Mobile Secondary Users

计算机科学 计算机网络 上传 异步通信 频道(广播) 干扰(通信) 移动宽带 强化学习 无线 电信 万维网 人工智能
作者
Xuewen Dong,Zhichao You,Ximeng Liu,Yuanxiong Guo,Yulong Shen,Yanmin Gong
出处
期刊:IEEE Transactions on Wireless Communications [Institute of Electrical and Electronics Engineers]
卷期号:23 (1): 621-636 被引量:1
标识
DOI:10.1109/twc.2023.3280933
摘要

Users in dynamic spectrum access (DSA) with federated reinforcement learning (FRL) autonomously access channels, avoiding centralized coordination and protecting users’ privacy. However, existing FRL-based DSA mechanisms are limited to ideal network states, i.e., assuming that channel states and users’ interference relationships are unchanged. Besides, users should upload intermediate results simultaneously for federated aggregation. The above conditions are impractical for mobile users since their network states and locations are unstable. Meanwhile, newly connected users have to train their models through local data with numerous computing resources since global models are unsuitable for them. We propose FRDSA, an FRL-based secure and lightweight channel selection mechanism in DSA for mobile users under dynamic network states. An independent channel selection environment with a virtual group strategy is presented to avoid interference between users under unstable channel states. Furthermore, an asynchronous parameter aggregation method in FRDSA dynamically adjusts the aggregation factors without users simultaneously uploading intermediate results. Simulations based on real trajectory data show that FRDSA significantly reduces approximately 60% interference between mobile users under unstable network states. Newly connected users can directly apply the well-trained global model to access channels autonomously instead of retraining a model, effectively reducing mobile users’ computing resource requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助pp采纳,获得10
刚刚
波尔发布了新的文献求助10
1秒前
666完成签到,获得积分10
2秒前
guozizi发布了新的文献求助50
2秒前
科研通AI5应助丸子采纳,获得10
2秒前
3秒前
3秒前
4秒前
4秒前
乐观白薇完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
传奇3应助lichunlei采纳,获得10
6秒前
6秒前
6秒前
科研通AI5应助沐沐采纳,获得10
7秒前
科目三应助Duel采纳,获得10
7秒前
喜悦冬易给喜悦冬易的求助进行了留言
8秒前
8秒前
研友_656B85发布了新的文献求助30
8秒前
8秒前
科目三应助snowpie采纳,获得20
8秒前
whg发布了新的文献求助10
8秒前
8秒前
gyx发布了新的文献求助10
9秒前
9秒前
姜姜发布了新的文献求助10
9秒前
无名发布了新的文献求助10
9秒前
CodeCraft应助天人采纳,获得10
10秒前
dm11发布了新的文献求助10
10秒前
星辰大海应助之昂采纳,获得10
11秒前
12秒前
小sl发布了新的文献求助10
12秒前
12秒前
WJ发布了新的文献求助10
12秒前
hideswan完成签到,获得积分20
12秒前
ZQM发布了新的文献求助10
13秒前
13秒前
沐沐完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525771
求助须知:如何正确求助?哪些是违规求助? 3106374
关于积分的说明 9279758
捐赠科研通 2803927
什么是DOI,文献DOI怎么找? 1539092
邀请新用户注册赠送积分活动 716407
科研通“疑难数据库(出版商)”最低求助积分说明 709449