Quantification of wetland vegetation communities features with airborne AVIRIS-NG, UAVSAR, and UAV LiDAR data in Peace-Athabasca Delta

激光雷达 环境科学 湿地 遥感 植被(病理学) 永久冻土 地理 地质学 生态学 海洋学 医学 生物 病理
作者
Chao Wang,Tamlin M. Pavelsky,Ethan D. Kyzivat,Fenix Garcia‐Tigreros,E. Podest,Fangfang Yao,Xiao Yang,Shuai Zhang,Conghe Song,Theodore Langhorst,Wayana Dolan,Martin Kurek,Merritt E. Harlan,L. C. Smith,David Butman,Robert G. M. Spencer,C. J. Gleason,Kimberly P. Wickland,Robert G. Striegl,Daniel L. Peters
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:294: 113646-113646 被引量:1
标识
DOI:10.1016/j.rse.2023.113646
摘要

Arctic-boreal wetlands, important ecosystems for biodiversity and ecological services, are experiencing hydrological changes including permafrost thaw, earlier snowmelt, and increased wildfire susceptibility. These changes are affecting wetland productivity, species diversity, and biogeochemical cycles. However, given the diverse forms and structures of wetland vegetation communities, traditional wetland maps generated from lower spatial and spectral resolution satellite imagery lack community-level vegetation classification and miss spatially complex patterns. In this study, we built a cloud-based workflow to map wetland vegetation community of the Peace-Athabasca Delta (PAD), Canada, by leveraging high-resolution (5-m) airborne multi-sensor datasets, namely NASA's Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR), and a historical LiDAR archive. Validation of our classifications using ground references indicates that classifications derived from AVIRIS-NG have higher accuracies (≥87.9%) than either UAVSAR (65.6%) or LiDAR (75.9%) for mapping wetland vegetation communities. We also show improved classification accuracy when combining information from multiple sensors. In particular, incorporating AVIRIS-NG and UAVSAR datasets substantially reduced omission errors of wet graminoid and wet shrub classes from 29.6% to 20.5% and from 10.8% to 7.5%, respectively. Combining AVIRIS-NG and LiDAR datasets further improves overall accuracy (+2.2%) for most classifications, especially emergent vegetation, wet graminoid, and wet shrub. The best performing model, using features derived from all three sensors, achieved an overall accuracy of 93.5%. The framework established here can be used to leverage extensive airborne AVIRIS-NG and UAVSAR datasets collected across Alaska and northwest Canada to understand the spatial distribution of Arctic-Boreal wetland vegetation communities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的鲂完成签到,获得积分10
1秒前
英姑应助科研工作者采纳,获得10
1秒前
1秒前
1秒前
所所应助大胆的弼采纳,获得10
1秒前
迷路的沛芹完成签到 ,获得积分10
2秒前
2秒前
果子爱学习完成签到 ,获得积分10
2秒前
IP190237发布了新的文献求助10
3秒前
3秒前
是白鸽啊完成签到 ,获得积分10
4秒前
maodoudou发布了新的文献求助10
4秒前
追梦小帅完成签到,获得积分10
4秒前
Winks完成签到,获得积分10
5秒前
5秒前
神奇海螺完成签到,获得积分10
5秒前
kai完成签到 ,获得积分10
6秒前
丘比特应助科研工作者采纳,获得10
6秒前
iufan发布了新的文献求助10
6秒前
马骁发布了新的文献求助10
6秒前
7秒前
彭佳乐发布了新的文献求助10
7秒前
风中的双完成签到 ,获得积分10
7秒前
8秒前
空白完成签到,获得积分10
8秒前
9秒前
红书包发布了新的文献求助10
9秒前
ShuangWeng应助周星星采纳,获得10
9秒前
思源应助笑点低的凡梦采纳,获得10
9秒前
忙里偷闲完成签到,获得积分10
10秒前
小九不太乖完成签到,获得积分10
10秒前
GAO发布了新的文献求助10
11秒前
leo完成签到 ,获得积分10
11秒前
12秒前
doclarrin完成签到 ,获得积分10
12秒前
情怀应助黄花采纳,获得10
12秒前
dy完成签到,获得积分10
12秒前
George Will完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134447
求助须知:如何正确求助?哪些是违规求助? 2785391
关于积分的说明 7771957
捐赠科研通 2441024
什么是DOI,文献DOI怎么找? 1297678
科研通“疑难数据库(出版商)”最低求助积分说明 625042
版权声明 600813