Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics

机器学习 计算机科学 支持向量机 地铁列车时刻表 调度(生产过程) 人工智能 门诊部 回归分析 预测建模 线性回归 服务(商务) 数据挖掘 医学 工程类 运营管理 经济 内科学 经济 操作系统
作者
Davood Golmohammadi,Lingyu Zhao,David Dreyfus
出处
期刊:Omega [Elsevier]
卷期号:120: 102907-102907 被引量:19
标识
DOI:10.1016/j.omega.2023.102907
摘要

Most outpatient clinics apply deterministic block scheduling policies to patient visits even though patients utilize varying amounts of time, leaving patients, operations managers, and clinicians frustrated because patients and physicians are kept waiting. This paper offers a decision-making model for schedulers so that the service time needed for a specific patient can be predicted to allow outpatient clinics to schedule more effectively. We employed an analytical approach, with a data driven methodology consisting of two phases. In phase one, machine learning algorithms are used to predict service time for outpatient clinics servicing patients with various characteristics. This study supports the understanding of factors that impact service time. A large dataset from an outpatient clinic is obtained and used in the analyses. Four dominant data mining models are developed to predict service time, and their performances are compared: neural networks (NNs), generalized linear model (GLM), linear regression (LR), and support vector regression (SVM). The NN models performed the best. The reason for visiting the doctor and patient type are identified as the primary characteristics to aid in predicting patient service time. We compare the proposed NN models with commonly used scheduling policies in practice in the second phase via simulation modeling and analysis. This paper contributes to the literature in four ways. First, we obtained a large dataset and extracted quality data to test the prediction accuracy of multiple models to determine which one improves scheduling the best. Second, patient characteristics are identified through machine learning modeling and sensitivity analysis to understand which ones are most important for service time prediction accuracy. Third, we analyzed the performance of standard scheduling policies used in clinics. Lastly, we provide clinical policy implications and recommendations that will provide insights and support appointment scheduling decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助玛卡巴卡采纳,获得10
1秒前
Lee完成签到,获得积分10
1秒前
chun123发布了新的文献求助30
2秒前
无花果应助OK不服气采纳,获得20
2秒前
张佳星完成签到 ,获得积分10
3秒前
周伊发布了新的文献求助10
3秒前
3秒前
Miki完成签到,获得积分10
4秒前
梅思寒完成签到 ,获得积分10
4秒前
4秒前
锦鲤嘟嘟嘟完成签到,获得积分20
6秒前
6秒前
欢呼的听南完成签到,获得积分20
7秒前
麦迪完成签到,获得积分10
8秒前
Dr.CTH发布了新的文献求助10
9秒前
无私航空完成签到,获得积分10
9秒前
Lee发布了新的文献求助20
9秒前
9秒前
今后应助咎如天采纳,获得10
9秒前
希望天下0贩的0应助777采纳,获得10
9秒前
10秒前
10秒前
10秒前
pluto应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
pluto应助科研通管家采纳,获得10
11秒前
重楼远志应助科研通管家采纳,获得50
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Autumn完成签到,获得积分10
11秒前
pluto应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
搜集达人应助火星上夜云采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545391
求助须知:如何正确求助?哪些是违规求助? 4631410
关于积分的说明 14620670
捐赠科研通 4573066
什么是DOI,文献DOI怎么找? 2507287
邀请新用户注册赠送积分活动 1484162
关于科研通互助平台的介绍 1455366