Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics

机器学习 计算机科学 支持向量机 地铁列车时刻表 调度(生产过程) 人工智能 门诊部 回归分析 预测建模 线性回归 服务(商务) 数据挖掘 医学 工程类 运营管理 经济 内科学 经济 操作系统
作者
Davood Golmohammadi,Lingyu Zhao,David Dreyfus
出处
期刊:Omega [Elsevier]
卷期号:120: 102907-102907 被引量:19
标识
DOI:10.1016/j.omega.2023.102907
摘要

Most outpatient clinics apply deterministic block scheduling policies to patient visits even though patients utilize varying amounts of time, leaving patients, operations managers, and clinicians frustrated because patients and physicians are kept waiting. This paper offers a decision-making model for schedulers so that the service time needed for a specific patient can be predicted to allow outpatient clinics to schedule more effectively. We employed an analytical approach, with a data driven methodology consisting of two phases. In phase one, machine learning algorithms are used to predict service time for outpatient clinics servicing patients with various characteristics. This study supports the understanding of factors that impact service time. A large dataset from an outpatient clinic is obtained and used in the analyses. Four dominant data mining models are developed to predict service time, and their performances are compared: neural networks (NNs), generalized linear model (GLM), linear regression (LR), and support vector regression (SVM). The NN models performed the best. The reason for visiting the doctor and patient type are identified as the primary characteristics to aid in predicting patient service time. We compare the proposed NN models with commonly used scheduling policies in practice in the second phase via simulation modeling and analysis. This paper contributes to the literature in four ways. First, we obtained a large dataset and extracted quality data to test the prediction accuracy of multiple models to determine which one improves scheduling the best. Second, patient characteristics are identified through machine learning modeling and sensitivity analysis to understand which ones are most important for service time prediction accuracy. Third, we analyzed the performance of standard scheduling policies used in clinics. Lastly, we provide clinical policy implications and recommendations that will provide insights and support appointment scheduling decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
万能图书馆应助mosisa采纳,获得10
1秒前
1秒前
TAO关闭了TAO文献求助
2秒前
广东最奶的龙完成签到,获得积分10
2秒前
oui发布了新的文献求助10
3秒前
wlp鹏完成签到,获得积分10
3秒前
liang发布了新的文献求助10
4秒前
4秒前
SciGPT应助芭蕾恰恰舞采纳,获得30
6秒前
CodeCraft应助99668采纳,获得10
6秒前
细心书包发布了新的文献求助10
7秒前
单薄枕头完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助30
9秒前
10秒前
蔡蔡蔡发布了新的文献求助10
10秒前
11秒前
李健的小迷弟应助鲸鱼采纳,获得10
11秒前
12秒前
12秒前
田様应助潇洒闭月采纳,获得10
12秒前
我是老大应助PhDL1采纳,获得10
13秒前
顺意发布了新的文献求助10
13秒前
义气凝阳发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
RONG发布了新的文献求助10
15秒前
15秒前
共享精神应助huangsi采纳,获得10
16秒前
Journey发布了新的文献求助10
17秒前
wyd222发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
19秒前
19秒前
完美世界应助aulinwl采纳,获得30
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762020
求助须知:如何正确求助?哪些是违规求助? 5533545
关于积分的说明 15401764
捐赠科研通 4898295
什么是DOI,文献DOI怎么找? 2634801
邀请新用户注册赠送积分活动 1582925
关于科研通互助平台的介绍 1538165