Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics

机器学习 计算机科学 支持向量机 地铁列车时刻表 调度(生产过程) 人工智能 门诊部 回归分析 预测建模 线性回归 服务(商务) 数据挖掘 医学 工程类 运营管理 经济 内科学 经济 操作系统
作者
Davood Golmohammadi,Lingyu Zhao,David Dreyfus
出处
期刊:Omega [Elsevier]
卷期号:120: 102907-102907 被引量:15
标识
DOI:10.1016/j.omega.2023.102907
摘要

Most outpatient clinics apply deterministic block scheduling policies to patient visits even though patients utilize varying amounts of time, leaving patients, operations managers, and clinicians frustrated because patients and physicians are kept waiting. This paper offers a decision-making model for schedulers so that the service time needed for a specific patient can be predicted to allow outpatient clinics to schedule more effectively. We employed an analytical approach, with a data driven methodology consisting of two phases. In phase one, machine learning algorithms are used to predict service time for outpatient clinics servicing patients with various characteristics. This study supports the understanding of factors that impact service time. A large dataset from an outpatient clinic is obtained and used in the analyses. Four dominant data mining models are developed to predict service time, and their performances are compared: neural networks (NNs), generalized linear model (GLM), linear regression (LR), and support vector regression (SVM). The NN models performed the best. The reason for visiting the doctor and patient type are identified as the primary characteristics to aid in predicting patient service time. We compare the proposed NN models with commonly used scheduling policies in practice in the second phase via simulation modeling and analysis. This paper contributes to the literature in four ways. First, we obtained a large dataset and extracted quality data to test the prediction accuracy of multiple models to determine which one improves scheduling the best. Second, patient characteristics are identified through machine learning modeling and sensitivity analysis to understand which ones are most important for service time prediction accuracy. Third, we analyzed the performance of standard scheduling policies used in clinics. Lastly, we provide clinical policy implications and recommendations that will provide insights and support appointment scheduling decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
4秒前
4秒前
4秒前
wangayting发布了新的文献求助10
5秒前
5秒前
5秒前
白白白发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
五里霜发布了新的文献求助10
7秒前
7秒前
CC发布了新的文献求助10
8秒前
9秒前
小景毕业完成签到,获得积分10
9秒前
汉堡包应助moyu123采纳,获得30
9秒前
10秒前
10秒前
筱可可发布了新的文献求助10
10秒前
wenxian发布了新的文献求助10
10秒前
执着翠芙发布了新的文献求助10
12秒前
14秒前
野子完成签到,获得积分20
15秒前
16秒前
msn00完成签到 ,获得积分10
17秒前
18秒前
19秒前
19秒前
20秒前
华仔应助碧蓝的曼岚采纳,获得10
20秒前
羽鸮完成签到,获得积分10
20秒前
现代飞鸟发布了新的文献求助10
21秒前
juziyaya应助秋风暖暖采纳,获得30
22秒前
羽鸮发布了新的文献求助10
23秒前
CC完成签到,获得积分20
23秒前
23秒前
花椒bear完成签到,获得积分10
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237