清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics

机器学习 计算机科学 支持向量机 地铁列车时刻表 调度(生产过程) 人工智能 门诊部 回归分析 预测建模 线性回归 服务(商务) 数据挖掘 医学 工程类 运营管理 经济 内科学 经济 操作系统
作者
Davood Golmohammadi,Lingyu Zhao,David Dreyfus
出处
期刊:Omega [Elsevier BV]
卷期号:120: 102907-102907 被引量:19
标识
DOI:10.1016/j.omega.2023.102907
摘要

Most outpatient clinics apply deterministic block scheduling policies to patient visits even though patients utilize varying amounts of time, leaving patients, operations managers, and clinicians frustrated because patients and physicians are kept waiting. This paper offers a decision-making model for schedulers so that the service time needed for a specific patient can be predicted to allow outpatient clinics to schedule more effectively. We employed an analytical approach, with a data driven methodology consisting of two phases. In phase one, machine learning algorithms are used to predict service time for outpatient clinics servicing patients with various characteristics. This study supports the understanding of factors that impact service time. A large dataset from an outpatient clinic is obtained and used in the analyses. Four dominant data mining models are developed to predict service time, and their performances are compared: neural networks (NNs), generalized linear model (GLM), linear regression (LR), and support vector regression (SVM). The NN models performed the best. The reason for visiting the doctor and patient type are identified as the primary characteristics to aid in predicting patient service time. We compare the proposed NN models with commonly used scheduling policies in practice in the second phase via simulation modeling and analysis. This paper contributes to the literature in four ways. First, we obtained a large dataset and extracted quality data to test the prediction accuracy of multiple models to determine which one improves scheduling the best. Second, patient characteristics are identified through machine learning modeling and sensitivity analysis to understand which ones are most important for service time prediction accuracy. Third, we analyzed the performance of standard scheduling policies used in clinics. Lastly, we provide clinical policy implications and recommendations that will provide insights and support appointment scheduling decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助愉快怜菡采纳,获得10
21秒前
紫熊发布了新的文献求助10
27秒前
科研通AI5应助容若采纳,获得10
33秒前
科研通AI2S应助Sym采纳,获得10
1分钟前
清脆的靖仇完成签到,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
JamesPei应助Sym采纳,获得10
2分钟前
自然亦凝完成签到,获得积分10
3分钟前
我我我完成签到,获得积分10
4分钟前
诺亚方舟哇哈哈完成签到 ,获得积分0
4分钟前
4分钟前
田様应助容若采纳,获得10
4分钟前
欧皇发布了新的文献求助10
4分钟前
4分钟前
思源应助容若采纳,获得10
5分钟前
cqhecq完成签到,获得积分10
6分钟前
6分钟前
6分钟前
逐梦小绳发布了新的文献求助10
6分钟前
方白秋完成签到,获得积分0
6分钟前
共享精神应助容若采纳,获得10
6分钟前
new1完成签到,获得积分10
8分钟前
dong完成签到,获得积分10
8分钟前
可爱的函函应助容若采纳,获得10
8分钟前
8分钟前
dong发布了新的文献求助10
8分钟前
snowdream完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助100
8分钟前
今后应助容若采纳,获得10
9分钟前
neversay4ever完成签到 ,获得积分10
9分钟前
风中的丝袜完成签到,获得积分10
9分钟前
水雾完成签到 ,获得积分10
10分钟前
orixero应助容若采纳,获得10
10分钟前
Raunio完成签到,获得积分10
10分钟前
芳华如梦完成签到 ,获得积分10
11分钟前
研友_VZG7GZ应助容若采纳,获得10
11分钟前
一盏壶完成签到,获得积分10
11分钟前
11分钟前
11分钟前
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Rapid synthesis of subnanoscale high-entropy alloys with ultrahigh durability 666
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4889676
求助须知:如何正确求助?哪些是违规求助? 4173588
关于积分的说明 12952267
捐赠科研通 3935088
什么是DOI,文献DOI怎么找? 2159212
邀请新用户注册赠送积分活动 1177552
关于科研通互助平台的介绍 1082487