Surgical Instrument Detection Algorithm Based on Improved YOLOv7x

计算机科学 稳健性(进化) 手术器械 算法 人工智能 任务(项目管理) 过程(计算) 卷积神经网络 计算机视觉 工程类 机械工程 生物化学 化学 系统工程 基因 操作系统
作者
Bin Ran,Bo Huang,Shunpan Liang,Yulei Hou
出处
期刊:Sensors [MDPI AG]
卷期号:23 (11): 5037-5037 被引量:1
标识
DOI:10.3390/s23115037
摘要

The counting of surgical instruments is an important task to ensure surgical safety and patient health. However, due to the uncertainty of manual operations, there is a risk of missing or miscounting instruments. Applying computer vision technology to the instrument counting process can not only improve efficiency, but also reduce medical disputes and promote the development of medical informatization. However, during the counting process, surgical instruments may be densely arranged or obstruct each other, and they may be affected by different lighting environments, all of which can affect the accuracy of instrument recognition. In addition, similar instruments may have only minor differences in appearance and shape, which increases the difficulty of identification. To address these issues, this paper improves the YOLOv7x object detection algorithm and applies it to the surgical instrument detection task. First, the RepLK Block module is introduced into the YOLOv7x backbone network, which can increase the effective receptive field and guide the network to learn more shape features. Second, the ODConv structure is introduced into the neck module of the network, which can significantly enhance the feature extraction ability of the basic convolution operation of the CNN and capture more rich contextual information. At the same time, we created the OSI26 data set, which contains 452 images and 26 surgical instruments, for model training and evaluation. The experimental results show that our improved algorithm exhibits higher accuracy and robustness in surgical instrument detection tasks, with F1, AP, AP50, and AP75 reaching 94.7%, 91.5%, 99.1%, and 98.2%, respectively, which are 4.6%, 3.1%, 3.6%, and 3.9% higher than the baseline. Compared to other mainstream object detection algorithms, our method has significant advantages. These results demonstrate that our method can more accurately identify surgical instruments, thereby improving surgical safety and patient health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TerryWang完成签到 ,获得积分20
2秒前
3秒前
figshare发布了新的文献求助10
4秒前
kaiki完成签到 ,获得积分10
4秒前
大模型应助於茗采纳,获得10
5秒前
养恩发布了新的文献求助10
6秒前
betty2009完成签到,获得积分10
6秒前
守仁则阳明完成签到 ,获得积分10
7秒前
9秒前
科研通AI5应助小王子采纳,获得10
9秒前
11秒前
ccc123完成签到 ,获得积分10
13秒前
13秒前
不懈奋进应助swordlee采纳,获得30
13秒前
15秒前
IgN发布了新的文献求助10
15秒前
17秒前
於茗发布了新的文献求助10
17秒前
17秒前
18秒前
三生万物完成签到,获得积分10
18秒前
18秒前
小飞七应助jy采纳,获得10
19秒前
Chance发布了新的文献求助10
21秒前
秀丽的香旋完成签到,获得积分10
21秒前
小糯发布了新的文献求助10
22秒前
强强发布了新的文献求助10
22秒前
研友_r8YEP8完成签到,获得积分10
23秒前
汉堡包应助跳跃的梦凡采纳,获得10
24秒前
ll应助在远方采纳,获得10
25秒前
儒雅的狼完成签到,获得积分10
25秒前
仁者发布了新的文献求助30
26秒前
27秒前
liang405发布了新的文献求助10
27秒前
研友_r8YEP8发布了新的文献求助10
29秒前
zhuj11应助研友_nEoEy8采纳,获得10
30秒前
31秒前
YS完成签到,获得积分10
32秒前
罗浩禹发布了新的文献求助10
34秒前
英姑应助xyqy采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543968
求助须知:如何正确求助?哪些是违规求助? 3121180
关于积分的说明 9345951
捐赠科研通 2819266
什么是DOI,文献DOI怎么找? 1550071
邀请新用户注册赠送积分活动 722375
科研通“疑难数据库(出版商)”最低求助积分说明 713169