已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Dual-Branch Spatio-Temporal-Spectral Transformer Feature Fusion Network for EEG-Based Visual Recognition

计算机科学 人工智能 模式识别(心理学) 脑电图 加权 特征提取 可视化 语音识别 心理学 医学 精神科 放射科
作者
Jie Luo,Weigang Cui,Song Xu,Lina Wang,Xiao Li,Xiaofeng Liao,Yang Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1721-1731 被引量:13
标识
DOI:10.1109/tii.2023.3280560
摘要

Recognizing visual objects from single-trial electroencephalograph (EEG) signals is a promising brain-computer interface technology. However, due to the redundant features from noisy multichannel EEG signals, it is still a challenging task to achieve high precision recognition. Recent deep learning approaches commonly extract spatio-temporal features of EEG signals, which neglect important spectral-temporal features and may degrade the EEG recognition performance. To address the deficiency, we propose a novel channel attention weighting and multilevel adaptive spectral aggregation based dual-branch spatio-temporal-spectral transformer feature fusion network (CAW-MASA-STST) for EEG-based visual recognition. Specially, we first develop a channel attention weighting (CAW) to automatically learn the channel weights of EEG signals. Then, a graph convolution-based MASA is employed to aggregate spectral-temporal features of different sub-bands. Finally, an STST is designed to fuse spatio-temporal and spectral-temporal features, which enhances the comprehensive learning ability by modeling the temporal dependencies of the fused features. Competitive experimental results on two public datasets demonstrate that the proposed method is able to achieve superior recognition performance compared with the state-of-the-art methods, indicating a feasible solution for visual recognition-based BCI technology. The code of our proposed method will be available at https://github.com/ljbuaa/VisualDecoding .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助Mimi采纳,获得30
刚刚
在水一方应助北风采纳,获得10
2秒前
塞辣完成签到,获得积分10
3秒前
耍酷晓霜发布了新的文献求助10
4秒前
Q甜完成签到,获得积分10
4秒前
9秒前
12秒前
yx_cheng应助依依采纳,获得10
13秒前
13秒前
13秒前
surge发布了新的文献求助10
14秒前
bkagyin应助冷眸采纳,获得10
14秒前
留胡子的昊强完成签到,获得积分10
15秒前
15秒前
AronHUANG发布了新的文献求助30
17秒前
Strayer关注了科研通微信公众号
18秒前
surge完成签到,获得积分10
19秒前
北风发布了新的文献求助10
21秒前
学必困完成签到 ,获得积分10
22秒前
newbiology完成签到 ,获得积分10
23秒前
无私代芹完成签到,获得积分10
24秒前
量子星尘发布了新的文献求助10
26秒前
momo发布了新的文献求助10
28秒前
28秒前
于东发布了新的文献求助10
31秒前
Ava应助科研通管家采纳,获得10
32秒前
丘比特应助科研通管家采纳,获得10
32秒前
李健应助科研通管家采纳,获得10
32秒前
32秒前
汉堡包应助科研通管家采纳,获得10
32秒前
32秒前
Shamray应助锦诚明采纳,获得60
34秒前
北风完成签到,获得积分10
35秒前
KDS发布了新的文献求助10
38秒前
39秒前
40秒前
40秒前
44秒前
jasmine发布了新的文献求助10
45秒前
冷眸发布了新的文献求助10
45秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956848
求助须知:如何正确求助?哪些是违规求助? 3502932
关于积分的说明 11110720
捐赠科研通 3233931
什么是DOI,文献DOI怎么找? 1787655
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802209