A Dual-Branch Spatio-Temporal-Spectral Transformer Feature Fusion Network for EEG-Based Visual Recognition

计算机科学 人工智能 模式识别(心理学) 脑电图 加权 特征提取 可视化 语音识别 心理学 精神科 医学 放射科
作者
Jie Luo,Weigang Cui,Song Xu,Lina Wang,Li Xiao,Xiaofeng Liao,Yang Li
出处
期刊:IEEE Transactions on Industrial Informatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1721-1731 被引量:12
标识
DOI:10.1109/tii.2023.3280560
摘要

Recognizing visual objects from single-trial electroencephalograph (EEG) signals is a promising brain-computer interface technology. However, due to the redundant features from noisy multichannel EEG signals, it is still a challenging task to achieve high precision recognition. Recent deep learning approaches commonly extract spatio-temporal features of EEG signals, which neglect important spectral-temporal features and may degrade the EEG recognition performance. To address the deficiency, we propose a novel channel attention weighting and multilevel adaptive spectral aggregation based dual-branch spatio-temporal-spectral transformer feature fusion network (CAW-MASA-STST) for EEG-based visual recognition. Specially, we first develop a channel attention weighting (CAW) to automatically learn the channel weights of EEG signals. Then, a graph convolution-based MASA is employed to aggregate spectral-temporal features of different sub-bands. Finally, an STST is designed to fuse spatio-temporal and spectral-temporal features, which enhances the comprehensive learning ability by modeling the temporal dependencies of the fused features. Competitive experimental results on two public datasets demonstrate that the proposed method is able to achieve superior recognition performance compared with the state-of-the-art methods, indicating a feasible solution for visual recognition-based BCI technology. The code of our proposed method will be available at https://github.com/ljbuaa/VisualDecoding .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助李天采纳,获得10
2秒前
小蘑菇应助可口可乐采纳,获得10
2秒前
4秒前
5秒前
桐桐应助zmnzmnzmn采纳,获得10
5秒前
酷炫的八宝粥完成签到,获得积分10
5秒前
6秒前
冷酷雅容发布了新的文献求助10
9秒前
脑洞疼应助chen采纳,获得30
9秒前
jinyu发布了新的文献求助10
9秒前
云母完成签到 ,获得积分10
10秒前
liangliu发布了新的文献求助10
10秒前
10秒前
咸鱼不翻身完成签到,获得积分10
10秒前
高兴的老黑完成签到,获得积分10
11秒前
12秒前
12秒前
风趣霆完成签到,获得积分10
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
标致的远望完成签到,获得积分10
15秒前
Owen应助科研通管家采纳,获得10
15秒前
哭泣灯泡应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
共享精神应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
哭泣灯泡应助科研通管家采纳,获得10
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
冷酷雅容完成签到,获得积分10
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得10
16秒前
李健应助科研通管家采纳,获得10
16秒前
UniqueT应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737788
求助须知:如何正确求助?哪些是违规求助? 3281410
关于积分的说明 10025130
捐赠科研通 2998123
什么是DOI,文献DOI怎么找? 1645087
邀请新用户注册赠送积分活动 782525
科研通“疑难数据库(出版商)”最低求助积分说明 749835