Spatiotemporal path tracking via deep reinforcement learning of robot for manufacturing internal logistics

强化学习 编织 机器人 路径(计算) 过程(计算) 运动规划 马尔可夫决策过程 计算机科学 移动机器人 人工智能 工程类 工业工程 马尔可夫过程 机械工程 数学 统计 操作系统 程序设计语言
作者
Fei Fan,Guang-lin Xu,Na Feng,Lin Li,Wei Jiang,Lianqin Yu,Xiaoshuang Xiong
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:69: 150-169 被引量:8
标识
DOI:10.1016/j.jmsy.2023.06.011
摘要

The development of engineering technology, the logistics system composed of wheeled mobile robots (WMR) and automated guided vehicles (AGV) have been widely used in industrial scenes. However, traditional manufacturing scenes with dense layout, such as weaving workshops, have higher requirements for automatic transportation of materials. How to realize the intelligent transportation and management of materials in the manufacturing workshop and balance the efficiency and safety of material processing and transportation is still a great challenge. To address this problem, we designed a logistics system based on cloth-roll handling robot (CHR) and its path tracking hybrid deep reinforcement learning (DRL) considering spatiotemporal efficiency and safety in weaving workshop. This research first focuses on the design of a dynamic observation Markov decision-making process that integrates scene features. Further, a deep reinforcement learning considering the heterogeneity of observation data is proposed to obtain the optimal action solution. Then, a distributed scenarios training is implemented to improve the interaction ability between agents and the environment in complex scenes. In addition, the balance between dynamic observation and on-site calculation is considered in the path tracking for actual weaving workshop.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
于帅祎关注了科研通微信公众号
1秒前
2秒前
3秒前
YSY发布了新的文献求助10
6秒前
9秒前
10秒前
大旭完成签到 ,获得积分10
11秒前
封印完成签到,获得积分10
11秒前
贰鸟应助小小鱼采纳,获得10
13秒前
14秒前
15秒前
carrier_hc完成签到,获得积分10
15秒前
17秒前
lilililili发布了新的文献求助10
18秒前
称心的蛟凤完成签到,获得积分10
18秒前
李健应助tjzbw采纳,获得10
19秒前
19秒前
JHL发布了新的文献求助10
22秒前
于帅祎发布了新的文献求助10
22秒前
26秒前
lilililili完成签到,获得积分10
28秒前
28秒前
29秒前
洪伟发布了新的文献求助10
29秒前
30秒前
小岳同学发布了新的文献求助10
32秒前
33秒前
鱼芋屿发布了新的文献求助10
34秒前
35秒前
斯文败类应助小亮哈哈采纳,获得10
35秒前
苏78发布了新的文献求助10
36秒前
陈佳发布了新的文献求助10
37秒前
37秒前
zyn完成签到,获得积分10
38秒前
39秒前
南瓜气气发布了新的文献求助10
40秒前
科研通AI2S应助曾经的孤萍采纳,获得10
41秒前
酷波er应助小岳同学采纳,获得10
43秒前
传奇3应助typewmichael采纳,获得10
43秒前
qqq完成签到,获得积分10
44秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961041
求助须知:如何正确求助?哪些是违规求助? 3507280
关于积分的说明 11135306
捐赠科研通 3239705
什么是DOI,文献DOI怎么找? 1790347
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150