Diagnostic Performance of Machine Learning-Derived Radiomics Signature of Pericoronary Adipose Tissue in Coronary Computed Tomography Angiography for Coronary Artery In-Stent Restenosis

医学 无线电技术 支架 再狭窄 放射科 计算机断层血管造影 经皮冠状动脉介入治疗 人工智能 血管造影 内科学 计算机科学 心肌梗塞
作者
Keyi Cui,Shuo Liang,Minghui Hua,Yufan Gao,Zhenxing Feng,Wenjiao Wang,Hong Zhang
出处
期刊:Academic Radiology [Elsevier]
卷期号:30 (12): 2834-2843 被引量:3
标识
DOI:10.1016/j.acra.2023.04.006
摘要

Coronary inflammation can alter the perivascular fat phenotype. Hence, we aimed to assess the diagnostic performance of radiomics features of pericoronary adipose tissue (PCAT) in coronary computed tomography angiography (CCTA) for in-stent restenosis (ISR) after percutaneous coronary intervention.In this study, 165 patients with 214 eligible vessels were included, and ISR was found in 79 vessels. After evaluating clinical and stent characteristics, peri-stent fat attenuation index, and PCAT volume, 1688 radiomics features were extracted from each peri-stent PCAT segmentation. The eligible vessels were randomly categorized into training and validation groups in a ratio of 7:3. After performing feature selection using Pearson's correlation, F test, and least absolute shrinkage and selection operator analysis, radiomics models and integrated models that combined selected clinical features and Radscore were established using five different machine learning algorithms (logistic regression, support vector machine, random forest, stochastic gradient descent, and XGBoost). Subgroup analysis was performed using the same method for patients with stent diameters of ≤ 3 mm.Nine significant radiomics features were selected, and the areas under the curves (AUCs) for the radiomics model and the integrated model were 0.69 and 0.79, respectively, for the validation group. The AUCs of the subgroup radiomics model based on 15 selected radiomics features and the subgroup integrated model were 0.82 and 0.85, respectively, for the validation group, which showed better diagnostic performance.CCTA-based radiomics signature of PCAT has the potential to identify coronary artery ISR without additional costs or radiation exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
111完成签到,获得积分10
6秒前
8秒前
英勇凡儿发布了新的文献求助10
9秒前
香蕉觅云应助加速度采纳,获得10
11秒前
你爹发布了新的文献求助20
12秒前
14秒前
桐桐应助123456采纳,获得10
14秒前
秋秋发布了新的文献求助10
14秒前
15秒前
一米阳光完成签到,获得积分10
18秒前
20秒前
共享精神应助samifranco采纳,获得10
20秒前
21秒前
CodeCraft应助june采纳,获得10
23秒前
共享精神应助huyang采纳,获得10
23秒前
一叶知秋完成签到 ,获得积分10
24秒前
Pxn1bplus发布了新的文献求助10
24秒前
24秒前
123456发布了新的文献求助10
24秒前
24秒前
从容安波完成签到 ,获得积分10
25秒前
舒心糖豆发布了新的文献求助10
27秒前
山真页完成签到,获得积分10
28秒前
汤鱼发布了新的文献求助10
28秒前
Tink完成签到,获得积分10
29秒前
29秒前
张三发布了新的文献求助10
30秒前
摘星012完成签到 ,获得积分10
31秒前
尖果儿发布了新的文献求助10
31秒前
可爱的函函应助奇异物质采纳,获得10
31秒前
34秒前
34秒前
june完成签到,获得积分10
35秒前
你爹完成签到,获得积分10
35秒前
整齐芷文完成签到,获得积分10
37秒前
orixero应助璇儿采纳,获得10
37秒前
汉堡包应助ZYC采纳,获得10
38秒前
39秒前
40秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135027
求助须知:如何正确求助?哪些是违规求助? 2785983
关于积分的说明 7774640
捐赠科研通 2441787
什么是DOI,文献DOI怎么找? 1298184
科研通“疑难数据库(出版商)”最低求助积分说明 625088
版权声明 600825