Diagnostic Performance of Machine Learning-Derived Radiomics Signature of Pericoronary Adipose Tissue in Coronary Computed Tomography Angiography for Coronary Artery In-Stent Restenosis

医学 无线电技术 支架 再狭窄 放射科 计算机断层血管造影 经皮冠状动脉介入治疗 人工智能 血管造影 内科学 计算机科学 心肌梗塞
作者
Keyi Cui,Shuo Liang,Minghui Hua,Yufan Gao,Zhenxing Feng,Wenjiao Wang,Hong Zhang
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 2834-2843 被引量:4
标识
DOI:10.1016/j.acra.2023.04.006
摘要

Coronary inflammation can alter the perivascular fat phenotype. Hence, we aimed to assess the diagnostic performance of radiomics features of pericoronary adipose tissue (PCAT) in coronary computed tomography angiography (CCTA) for in-stent restenosis (ISR) after percutaneous coronary intervention.In this study, 165 patients with 214 eligible vessels were included, and ISR was found in 79 vessels. After evaluating clinical and stent characteristics, peri-stent fat attenuation index, and PCAT volume, 1688 radiomics features were extracted from each peri-stent PCAT segmentation. The eligible vessels were randomly categorized into training and validation groups in a ratio of 7:3. After performing feature selection using Pearson's correlation, F test, and least absolute shrinkage and selection operator analysis, radiomics models and integrated models that combined selected clinical features and Radscore were established using five different machine learning algorithms (logistic regression, support vector machine, random forest, stochastic gradient descent, and XGBoost). Subgroup analysis was performed using the same method for patients with stent diameters of ≤ 3 mm.Nine significant radiomics features were selected, and the areas under the curves (AUCs) for the radiomics model and the integrated model were 0.69 and 0.79, respectively, for the validation group. The AUCs of the subgroup radiomics model based on 15 selected radiomics features and the subgroup integrated model were 0.82 and 0.85, respectively, for the validation group, which showed better diagnostic performance.CCTA-based radiomics signature of PCAT has the potential to identify coronary artery ISR without additional costs or radiation exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光彩虹小白马完成签到 ,获得积分10
1秒前
John发布了新的文献求助10
1秒前
热心易绿完成签到 ,获得积分10
1秒前
2秒前
老神在在完成签到,获得积分10
3秒前
开朗的慕儿完成签到,获得积分10
5秒前
Summer完成签到,获得积分10
5秒前
5秒前
zhang发布了新的文献求助10
5秒前
5秒前
哈喽小雪发布了新的文献求助10
6秒前
昀宇完成签到 ,获得积分10
7秒前
可爱的函函应助呱呱采纳,获得10
8秒前
8秒前
PJ发布了新的文献求助30
9秒前
白色风车完成签到,获得积分10
9秒前
yang完成签到,获得积分10
9秒前
FashionBoy应助呼呼采纳,获得10
11秒前
JY发布了新的文献求助20
11秒前
七堇完成签到,获得积分10
12秒前
可爱的函函应助飞快的珩采纳,获得10
12秒前
12秒前
QZ发布了新的文献求助10
13秒前
清新的问枫完成签到,获得积分10
14秒前
15秒前
温柔的蛋挞完成签到,获得积分10
16秒前
zhang完成签到,获得积分10
17秒前
John完成签到,获得积分20
18秒前
苹果可燕发布了新的文献求助10
20秒前
张小度ever完成签到 ,获得积分10
20秒前
tinneywu发布了新的文献求助10
21秒前
思源应助胡hhhhhhhhhh采纳,获得10
23秒前
QZ完成签到,获得积分10
23秒前
23秒前
彭于晏应助Summer采纳,获得10
24秒前
24秒前
帅气的雷发布了新的文献求助10
25秒前
缓慢的秋莲完成签到,获得积分10
27秒前
是陶不言啊完成签到,获得积分10
28秒前
纯真凌雪完成签到,获得积分20
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 890
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761138
求助须知:如何正确求助?哪些是违规求助? 3305118
关于积分的说明 10132330
捐赠科研通 3019134
什么是DOI,文献DOI怎么找? 1657982
邀请新用户注册赠送积分活动 791747
科研通“疑难数据库(出版商)”最低求助积分说明 754634