Implementing trade‐in programs in the presence of resale platforms: Mode selection and pricing

自相残杀 升级 产品(数学) 模式(计算机接口) 计算机科学 业务 稳健性(进化) 产业组织 微观经济学 单位(环理论) 网络效应 激励 经济 操作系统 基因 化学 数学教育 生物化学 数学 几何学
作者
Xuanming Bai,Tsan‐Ming Choi,Yongjian Li,Xiaochen Sun
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (10): 3193-3208 被引量:40
标识
DOI:10.1111/poms.14030
摘要

Resale platforms such as Swappa and ThredUP, which provide a channel for product‐holders to sell used products, have become common. Interestingly, in the presence of resale platforms, some firms, such as Apple, set lower rebates for the trade‐in‐for‐upgrade (TU) mode instead of implementing the trade‐in‐for‐upgrade‐and‐cash (TUC) mode as Huawei does. In this paper, we build game‐theoretical models to explore how a firm should adjust its trade‐in strategy (e.g., choose pricing and mode selection between TU and TUC) in reaction to the emergence of third‐party resale platforms. We derive several insights. First, we find that using the TU mode helps to encourage consumer repurchases, whereas the TUC mode may have a greater promotion effect on consumers’ first purchases. Second, we show that in the TUC mode, the amount of the trade‐in rebate is not affected by the presence of the resale platform. Differently, in the TU mode, whether the firm should provide a more generous trade‐in rebate depends on the unit product cost when the resale platform is present. Third, in response to the resale platform, the firm should choose the TU mode to take advantage of the platform's promotion effect if the unit product cost is high and choose the TUC mode to avoid the platform's cannibalization effect if the unit product cost is low. To verify the robustness of our findings, we consider the effects of reduced consumer uncertainty and the dynamic pricing mechanism in the extended models. Our main findings concerning trade‐in rebate and mode selection remain valid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
方方完成签到,获得积分10
1秒前
cp发布了新的文献求助10
1秒前
钮若翠发布了新的文献求助30
2秒前
浮游应助蚂蚱别跳采纳,获得10
2秒前
乐乐应助蚂蚱别跳采纳,获得10
2秒前
3秒前
活力怀绿发布了新的文献求助10
4秒前
5秒前
爱晴天的小妮子完成签到,获得积分20
7秒前
无花果应助猴子魏采纳,获得10
7秒前
7秒前
啊啦啦发布了新的文献求助10
8秒前
llly发布了新的文献求助10
9秒前
9秒前
9秒前
绿刺猬完成签到 ,获得积分10
10秒前
丘比特应助寒冷小鸭子采纳,获得10
11秒前
小二郎应助小L同学采纳,获得10
11秒前
12秒前
12秒前
Fighter发布了新的文献求助10
12秒前
眯眯眼的砖头完成签到,获得积分10
12秒前
12秒前
123发布了新的文献求助10
13秒前
CodeCraft应助积极的老鼠采纳,获得10
14秒前
我是老大应助dingxiaoye采纳,获得10
15秒前
zhinian完成签到 ,获得积分10
16秒前
cc完成签到,获得积分10
16秒前
slz完成签到,获得积分10
17秒前
兴奋稚晴发布了新的文献求助10
18秒前
18秒前
FashionBoy应助Fighter采纳,获得10
19秒前
19秒前
魁梧的乐天完成签到 ,获得积分10
20秒前
slz发布了新的文献求助10
20秒前
吴彦祖完成签到,获得积分10
20秒前
Orange应助付世超采纳,获得10
21秒前
狂野吐司完成签到 ,获得积分10
22秒前
木心发布了新的文献求助30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537614
求助须知:如何正确求助?哪些是违规求助? 4625106
关于积分的说明 14594569
捐赠科研通 4565561
什么是DOI,文献DOI怎么找? 2502505
邀请新用户注册赠送积分活动 1481073
关于科研通互助平台的介绍 1452288