Implementing trade‐in programs in the presence of resale platforms: Mode selection and pricing

自相残杀 升级 产品(数学) 模式(计算机接口) 计算机科学 业务 稳健性(进化) 产业组织 微观经济学 单位(环理论) 网络效应 激励 经济 操作系统 基因 化学 数学教育 生物化学 数学 几何学
作者
Xuanming Bai,Tsan‐Ming Choi,Yongjian Li,Xiaochen Sun
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (10): 3193-3208 被引量:23
标识
DOI:10.1111/poms.14030
摘要

Resale platforms such as Swappa and ThredUP, which provide a channel for product‐holders to sell used products, have become common. Interestingly, in the presence of resale platforms, some firms, such as Apple, set lower rebates for the trade‐in‐for‐upgrade (TU) mode instead of implementing the trade‐in‐for‐upgrade‐and‐cash (TUC) mode as Huawei does. In this paper, we build game‐theoretical models to explore how a firm should adjust its trade‐in strategy (e.g., choose pricing and mode selection between TU and TUC) in reaction to the emergence of third‐party resale platforms. We derive several insights. First, we find that using the TU mode helps to encourage consumer repurchases, whereas the TUC mode may have a greater promotion effect on consumers’ first purchases. Second, we show that in the TUC mode, the amount of the trade‐in rebate is not affected by the presence of the resale platform. Differently, in the TU mode, whether the firm should provide a more generous trade‐in rebate depends on the unit product cost when the resale platform is present. Third, in response to the resale platform, the firm should choose the TU mode to take advantage of the platform's promotion effect if the unit product cost is high and choose the TUC mode to avoid the platform's cannibalization effect if the unit product cost is low. To verify the robustness of our findings, we consider the effects of reduced consumer uncertainty and the dynamic pricing mechanism in the extended models. Our main findings concerning trade‐in rebate and mode selection remain valid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程程发布了新的文献求助10
刚刚
mushroomdoor发布了新的文献求助10
刚刚
SYLH应助LZH采纳,获得20
1秒前
罗wq发布了新的文献求助10
1秒前
jiangmingjiao完成签到,获得积分10
2秒前
yookia应助科研通管家采纳,获得10
2秒前
无私的芹应助科研通管家采纳,获得10
2秒前
2秒前
白桃枝完成签到,获得积分10
2秒前
无情向薇应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
无私的芹应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
3秒前
zhixiang应助科研通管家采纳,获得10
3秒前
cr7发布了新的文献求助10
3秒前
无私的芹应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
无私的芹应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得10
3秒前
柯一一应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得10
4秒前
汉堡包应助jerry采纳,获得10
4秒前
千跃应助科研通管家采纳,获得20
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
无私的芹应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
背后海亦应助科研通管家采纳,获得20
4秒前
4秒前
烟花应助科研通管家采纳,获得10
4秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959533
求助须知:如何正确求助?哪些是违规求助? 3505776
关于积分的说明 11126048
捐赠科研通 3237690
什么是DOI,文献DOI怎么找? 1789252
邀请新用户注册赠送积分活动 871623
科研通“疑难数据库(出版商)”最低求助积分说明 802916