Implementing trade‐in programs in the presence of resale platforms: Mode selection and pricing

自相残杀 升级 产品(数学) 模式(计算机接口) 计算机科学 业务 稳健性(进化) 产业组织 微观经济学 单位(环理论) 网络效应 激励 经济 操作系统 基因 化学 数学教育 生物化学 数学 几何学
作者
Xuanming Bai,Tsan‐Ming Choi,Yongjian Li,Xiaochen Sun
出处
期刊:Production and Operations Management [Wiley]
卷期号:32 (10): 3193-3208 被引量:22
标识
DOI:10.1111/poms.14030
摘要

Resale platforms such as Swappa and ThredUP, which provide a channel for product‐holders to sell used products, have become common. Interestingly, in the presence of resale platforms, some firms, such as Apple, set lower rebates for the trade‐in‐for‐upgrade (TU) mode instead of implementing the trade‐in‐for‐upgrade‐and‐cash (TUC) mode as Huawei does. In this paper, we build game‐theoretical models to explore how a firm should adjust its trade‐in strategy (e.g., choose pricing and mode selection between TU and TUC) in reaction to the emergence of third‐party resale platforms. We derive several insights. First, we find that using the TU mode helps to encourage consumer repurchases, whereas the TUC mode may have a greater promotion effect on consumers’ first purchases. Second, we show that in the TUC mode, the amount of the trade‐in rebate is not affected by the presence of the resale platform. Differently, in the TU mode, whether the firm should provide a more generous trade‐in rebate depends on the unit product cost when the resale platform is present. Third, in response to the resale platform, the firm should choose the TU mode to take advantage of the platform's promotion effect if the unit product cost is high and choose the TUC mode to avoid the platform's cannibalization effect if the unit product cost is low. To verify the robustness of our findings, we consider the effects of reduced consumer uncertainty and the dynamic pricing mechanism in the extended models. Our main findings concerning trade‐in rebate and mode selection remain valid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温言完成签到,获得积分10
刚刚
思源应助Neko采纳,获得10
刚刚
Jasper应助通~采纳,获得10
1秒前
1秒前
wary完成签到,获得积分10
1秒前
1秒前
11发布了新的文献求助10
2秒前
3秒前
张小敏发布了新的文献求助10
3秒前
lt_zyk完成签到,获得积分10
4秒前
4秒前
wary发布了新的文献求助10
5秒前
清爽老九完成签到,获得积分10
5秒前
Orange应助张鱼小丸子采纳,获得10
5秒前
6秒前
7秒前
雨夜星空完成签到,获得积分10
7秒前
饱满的半青完成签到 ,获得积分10
8秒前
8秒前
务实盼海发布了新的文献求助10
8秒前
Jouleken完成签到,获得积分10
8秒前
9秒前
zq00完成签到,获得积分10
9秒前
9秒前
斯文败类应助独木舟采纳,获得10
9秒前
易哒哒完成签到,获得积分10
9秒前
CCL应助QXS采纳,获得50
10秒前
大方安白完成签到,获得积分10
10秒前
Xxaaa完成签到,获得积分20
10秒前
张小敏完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
科研通AI2S应助Zhong采纳,获得10
12秒前
yidashi完成签到,获得积分10
12秒前
Kelvin.Tsi完成签到 ,获得积分10
12秒前
Island发布了新的文献求助10
13秒前
hu970发布了新的文献求助10
13秒前
九九发布了新的文献求助10
13秒前
123456完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762