亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition

欧几里德距离 计算机科学 脑电图 功能连接 特征提取 情绪分类 脑-机接口 距离矩阵 语音识别 矩阵范数 基质(化学分析) 频域 模式识别(心理学) 人工智能 无线电频谱 频带 数学 心理学 电信 算法 物理 神经科学 特征向量 精神科 复合材料 材料科学 量子力学 计算机视觉 带宽(计算) 计算机网络
作者
Yuchan Zhang,Guanghui Yan,Wenwen Chang,Wenqie Huang,Yueting Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104157-104157 被引量:30
标识
DOI:10.1016/j.bspc.2022.104157
摘要

The study of emotional states in brain-computer interface (BCI) has a wide range of applications in psychiatry, psychology, et al. However, there is few novel feature extraction method integrating time-domain and space-domain features in emotion classification. This study explored the connectivity patterns between brain regions over functional connectivity brain networks in different frequency bands of electroencephalogram (EEG) signals and proposed a novel feature extraction method to classify emotions, which provided a unique perspective on emotion recognition. We constructed phase locking value (PLV) matrices analyzed in different frequency bands. Then, three distance matrices, dF, dS, and dLE, were built using the corresponding three distance measures (the Frobenius norm, the spectral norm, and the log-Euclidean distance, respectively). And the complexity measures on those distance matrices were calculated. The distance matrices and complexity measures, as two features, were fed into the machine learning classifiers to validate the proposed method. Eventually, the dF matrix obtained an average classification accuracy of 83.96 % in the alpha band between positive and neutral emotions, the dLE matrix obtained an average classification accuracy of 84.12 % in the beta band between positive and negative emotions, and the dF matrix obtained an average classification accuracy of 83.56 % in the delta band between neutral and negative emotions. We conclude that the delta, alpha, and beta frequency bands correlate highly with emotions, and the brain's anterior and right temporal lobes are inextricably linked to emotions. In addition, the feature extraction method proposed in this paper can effectively improve the classification accuracy of emotions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyuan发布了新的文献求助10
1秒前
KINGAZX完成签到 ,获得积分10
18秒前
量子星尘发布了新的文献求助10
47秒前
wanci应助白华苍松采纳,获得10
55秒前
今后应助科研通管家采纳,获得30
1分钟前
吊炸天发布了新的文献求助30
2分钟前
热爱科研的小白鼠完成签到,获得积分10
2分钟前
无算浮白完成签到,获得积分10
2分钟前
吊炸天完成签到,获得积分10
2分钟前
哈哈完成签到,获得积分10
3分钟前
Cherish完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
研友_VZG7GZ应助着急的元柏采纳,获得10
3分钟前
白华苍松发布了新的文献求助20
4分钟前
4分钟前
4分钟前
lingkai完成签到 ,获得积分10
4分钟前
5分钟前
大模型应助科研通管家采纳,获得10
5分钟前
充电宝应助科研通管家采纳,获得10
5分钟前
5分钟前
Queena发布了新的文献求助10
5分钟前
闪闪小蝴蝶关注了科研通微信公众号
6分钟前
6分钟前
6分钟前
6分钟前
qwwhu发布了新的文献求助10
6分钟前
热情依白完成签到 ,获得积分10
6分钟前
wangfaqing942完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
Sun完成签到,获得积分10
7分钟前
7分钟前
qyn1234566完成签到,获得积分10
7分钟前
qwwhu发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584670
求助须知:如何正确求助?哪些是违规求助? 4668633
关于积分的说明 14771499
捐赠科研通 4613084
什么是DOI,文献DOI怎么找? 2530169
邀请新用户注册赠送积分活动 1499067
关于科研通互助平台的介绍 1467499