已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition

欧几里德距离 计算机科学 脑电图 功能连接 特征提取 情绪分类 脑-机接口 距离矩阵 语音识别 矩阵范数 基质(化学分析) 频域 模式识别(心理学) 人工智能 无线电频谱 频带 数学 心理学 电信 算法 物理 神经科学 特征向量 精神科 复合材料 材料科学 量子力学 计算机视觉 带宽(计算) 计算机网络
作者
Yuchan Zhang,Guanghui Yan,Wenwen Chang,Wenqie Huang,Yueting Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104157-104157 被引量:30
标识
DOI:10.1016/j.bspc.2022.104157
摘要

The study of emotional states in brain-computer interface (BCI) has a wide range of applications in psychiatry, psychology, et al. However, there is few novel feature extraction method integrating time-domain and space-domain features in emotion classification. This study explored the connectivity patterns between brain regions over functional connectivity brain networks in different frequency bands of electroencephalogram (EEG) signals and proposed a novel feature extraction method to classify emotions, which provided a unique perspective on emotion recognition. We constructed phase locking value (PLV) matrices analyzed in different frequency bands. Then, three distance matrices, dF, dS, and dLE, were built using the corresponding three distance measures (the Frobenius norm, the spectral norm, and the log-Euclidean distance, respectively). And the complexity measures on those distance matrices were calculated. The distance matrices and complexity measures, as two features, were fed into the machine learning classifiers to validate the proposed method. Eventually, the dF matrix obtained an average classification accuracy of 83.96 % in the alpha band between positive and neutral emotions, the dLE matrix obtained an average classification accuracy of 84.12 % in the beta band between positive and negative emotions, and the dF matrix obtained an average classification accuracy of 83.56 % in the delta band between neutral and negative emotions. We conclude that the delta, alpha, and beta frequency bands correlate highly with emotions, and the brain's anterior and right temporal lobes are inextricably linked to emotions. In addition, the feature extraction method proposed in this paper can effectively improve the classification accuracy of emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jm发布了新的文献求助10
2秒前
英姑应助subat采纳,获得10
3秒前
LPPQBB应助科研通管家采纳,获得30
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
在水一方应助lingmuhuahua采纳,获得10
6秒前
KUN完成签到 ,获得积分10
6秒前
7秒前
mo完成签到 ,获得积分10
9秒前
昆工完成签到 ,获得积分10
9秒前
田様应助有趣的银采纳,获得10
10秒前
深情安青应助有趣的银采纳,获得10
10秒前
大个应助jm采纳,获得10
12秒前
13秒前
赘婿应助cc采纳,获得10
14秒前
14秒前
subat发布了新的文献求助10
18秒前
研友_VZG7GZ应助标致的山水采纳,获得10
21秒前
理理完成签到 ,获得积分10
21秒前
Louise发布了新的文献求助10
21秒前
23秒前
12123浪发布了新的文献求助10
23秒前
Perry完成签到,获得积分10
23秒前
木由发布了新的文献求助30
24秒前
jungle完成签到 ,获得积分10
25秒前
传奇3应助subat采纳,获得10
26秒前
wang完成签到 ,获得积分10
27秒前
努力的淼淼完成签到 ,获得积分10
30秒前
32秒前
Leon Lai完成签到,获得积分0
35秒前
hush发布了新的文献求助10
37秒前
37秒前
QQ糖发布了新的文献求助10
37秒前
38秒前
Louise完成签到,获得积分10
40秒前
lingmuhuahua发布了新的文献求助10
43秒前
47秒前
可爱的函函应助hush采纳,获得10
47秒前
50秒前
subat发布了新的文献求助10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5301583
求助须知:如何正确求助?哪些是违规求助? 4449070
关于积分的说明 13847752
捐赠科研通 4335139
什么是DOI,文献DOI怎么找? 2380126
邀请新用户注册赠送积分活动 1375107
关于科研通互助平台的介绍 1341130