EEG-based multi-frequency band functional connectivity analysis and the application of spatio-temporal features in emotion recognition

欧几里德距离 计算机科学 脑电图 功能连接 特征提取 情绪分类 脑-机接口 距离矩阵 语音识别 矩阵范数 基质(化学分析) 频域 模式识别(心理学) 人工智能 无线电频谱 频带 数学 心理学 电信 算法 物理 神经科学 特征向量 精神科 复合材料 材料科学 量子力学 计算机视觉 带宽(计算) 计算机网络
作者
Yuchan Zhang,Guanghui Yan,Wenwen Chang,Wenqie Huang,Yueting Yuan
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:79: 104157-104157 被引量:30
标识
DOI:10.1016/j.bspc.2022.104157
摘要

The study of emotional states in brain-computer interface (BCI) has a wide range of applications in psychiatry, psychology, et al. However, there is few novel feature extraction method integrating time-domain and space-domain features in emotion classification. This study explored the connectivity patterns between brain regions over functional connectivity brain networks in different frequency bands of electroencephalogram (EEG) signals and proposed a novel feature extraction method to classify emotions, which provided a unique perspective on emotion recognition. We constructed phase locking value (PLV) matrices analyzed in different frequency bands. Then, three distance matrices, dF, dS, and dLE, were built using the corresponding three distance measures (the Frobenius norm, the spectral norm, and the log-Euclidean distance, respectively). And the complexity measures on those distance matrices were calculated. The distance matrices and complexity measures, as two features, were fed into the machine learning classifiers to validate the proposed method. Eventually, the dF matrix obtained an average classification accuracy of 83.96 % in the alpha band between positive and neutral emotions, the dLE matrix obtained an average classification accuracy of 84.12 % in the beta band between positive and negative emotions, and the dF matrix obtained an average classification accuracy of 83.56 % in the delta band between neutral and negative emotions. We conclude that the delta, alpha, and beta frequency bands correlate highly with emotions, and the brain's anterior and right temporal lobes are inextricably linked to emotions. In addition, the feature extraction method proposed in this paper can effectively improve the classification accuracy of emotions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
June发布了新的文献求助20
2秒前
liu发布了新的文献求助10
2秒前
满眼星辰发布了新的文献求助10
3秒前
科研鸟发布了新的文献求助10
3秒前
3秒前
可可完成签到,获得积分10
5秒前
大翟完成签到 ,获得积分10
5秒前
善学以致用应助ddddd采纳,获得10
5秒前
6秒前
6秒前
爆米花应助大力芸采纳,获得10
8秒前
研友_VZG7GZ应助谦让的樱采纳,获得10
8秒前
个性紫完成签到 ,获得积分10
9秒前
Robert完成签到,获得积分10
9秒前
heavennew完成签到,获得积分10
9秒前
st发布了新的文献求助10
10秒前
10秒前
10秒前
科研通AI2S应助zzq采纳,获得10
12秒前
完美世界应助笨笨薯片采纳,获得10
12秒前
14秒前
14秒前
15秒前
陸陸大顺发布了新的文献求助10
15秒前
SYLH应助st采纳,获得10
15秒前
yan发布了新的文献求助10
16秒前
雪山飞龙发布了新的文献求助10
16秒前
CodeCraft应助大家好车架号h采纳,获得10
18秒前
ddddd发布了新的文献求助10
18秒前
憨憨的小于完成签到,获得积分10
18秒前
烟花应助满眼星辰采纳,获得10
19秒前
友好的荣轩完成签到,获得积分10
19秒前
爆米花应助no_one采纳,获得10
19秒前
20秒前
天真大神发布了新的文献求助10
21秒前
22秒前
st完成签到,获得积分20
22秒前
24秒前
24秒前
25秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403