Semantic-enhanced neural collaborative filtering models in recommender systems

计算机科学 推荐系统 协同过滤 人工智能 情报检索 自然语言处理 机器学习
作者
Pham Minh Thu,Thi Thanh Sang Nguyen
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:257: 109934-109934 被引量:8
标识
DOI:10.1016/j.knosys.2022.109934
摘要

Recommendation systems or recommender systems (RSs) are very popular in entertainment websites. With the combination of neural networks and collaborative filtering, Neural Collaborative Filtering (NCF) recommendation methods have shown their outperformance in making item suggestions. However, the lack of semantic relationships between objects makes the NCF unable to capture the complex user-item interactions. Moreover, traditional NCF is unable to capture the dynamic user preference over time. To address these issues, in this paper, we propose novel semantic-enhanced NCF models which are applied to movie rating prediction and movie recommendation. Therefore, MovieLens and IMDB datasets are taken into account as case studies. The proposed models are the integration of ontology-like modeling and deep learning for recommendation tasks into two parts:(1) building the semantic knowledge base for movies and (2) building the user behavior analytic model that has semantic knowledge inference on the knowledge base combined with the sequential preference learned from user sessions, input into the NCF module for making predictions or recommendations. Several experiments have been conducted to show their better recommendation performance than the traditional NCF model. • Building the semantic knowledge base for enhancing deep learning models. • Building the user behavior analytic model that has semantic knowledge inference on the knowledge base combined with the sequential preference learned from sequential data, input into the Neural Collaborative Filtering module for making predictions and recommendations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
端庄之云发布了新的文献求助10
刚刚
真德秀先生完成签到,获得积分10
刚刚
苏我入鹿完成签到,获得积分10
刚刚
showitt发布了新的文献求助10
1秒前
zy发布了新的文献求助10
1秒前
1秒前
amy发布了新的文献求助10
4秒前
李茶嘚发布了新的文献求助10
4秒前
zhouzhou完成签到,获得积分10
4秒前
秋秋发布了新的文献求助10
4秒前
Emper发布了新的文献求助10
4秒前
5秒前
沈星回完成签到,获得积分10
6秒前
Akim应助平常的听蓉采纳,获得10
7秒前
7秒前
7秒前
----发布了新的文献求助10
8秒前
8秒前
研友_nqaBGn发布了新的文献求助10
8秒前
Azure完成签到 ,获得积分10
9秒前
嗨翻的冰激凌完成签到 ,获得积分10
10秒前
学术羊完成签到,获得积分10
10秒前
xm完成签到,获得积分20
11秒前
小王八完成签到 ,获得积分10
11秒前
vanne发布了新的文献求助10
11秒前
18922406869发布了新的文献求助10
12秒前
12秒前
Maniac完成签到 ,获得积分10
13秒前
结实的谷槐完成签到,获得积分10
13秒前
jzh6666完成签到 ,获得积分10
15秒前
缥缈一曲完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
stephen完成签到,获得积分10
17秒前
17秒前
JamesPei应助活泼学生采纳,获得10
18秒前
Emper发布了新的文献求助10
18秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160338
求助须知:如何正确求助?哪些是违规求助? 2811485
关于积分的说明 7892612
捐赠科研通 2470499
什么是DOI,文献DOI怎么找? 1315589
科研通“疑难数据库(出版商)”最低求助积分说明 630884
版权声明 602038