扳手
地形
强化学习
计算机科学
人工智能
机器人
序列(生物学)
六足动物
基础(拓扑)
适应(眼睛)
软件部署
控制(管理)
控制理论(社会学)
工程类
数学
机械工程
生物
遗传学
操作系统
光学
物理
数学分析
生态学
作者
Yuntao Ma,Farbod Farshidian,Tsuneharu Miki,Joonho Lee,Marco Hutter
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2201.03871
摘要
Deep reinforcement learning produces robust locomotion policies for legged robots over challenging terrains. To date, few studies have leveraged model-based methods to combine these locomotion skills with the precise control of manipulators. Here, we incorporate external dynamics plans into learning-based locomotion policies for mobile manipulation. We train the base policy by applying a random wrench sequence on the robot base in simulation and adding the noisified wrench sequence prediction to the policy observations. The policy then learns to counteract the partially-known future disturbance. The random wrench sequences are replaced with the wrench prediction generated with the dynamics plans from model predictive control to enable deployment. We show zero-shot adaptation for manipulators unseen during training. On the hardware, we demonstrate stable locomotion of legged robots with the prediction of the external wrench.
科研通智能强力驱动
Strongly Powered by AbleSci AI