亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mdjinij发布了新的文献求助10
1秒前
1秒前
4秒前
一指墨发布了新的文献求助20
6秒前
一指墨完成签到,获得积分10
12秒前
思源应助秋招没招了采纳,获得10
18秒前
26秒前
今后应助花花123采纳,获得10
26秒前
29秒前
亭瞳完成签到,获得积分10
31秒前
rengar完成签到,获得积分10
32秒前
亭瞳发布了新的文献求助10
35秒前
44秒前
吃了吃了完成签到,获得积分10
57秒前
1分钟前
合一海盗完成签到,获得积分10
1分钟前
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
1分钟前
Lim冬青完成签到 ,获得积分10
1分钟前
烤羊腿发布了新的文献求助10
1分钟前
完美世界应助mdjinij采纳,获得10
1分钟前
1分钟前
balko完成签到,获得积分10
1分钟前
1分钟前
啊Z完成签到 ,获得积分10
1分钟前
1分钟前
mdjinij发布了新的文献求助10
1分钟前
1分钟前
叛逆黑洞发布了新的文献求助10
1分钟前
似水流年完成签到 ,获得积分10
1分钟前
1分钟前
zxxxx完成签到 ,获得积分10
1分钟前
大龙完成签到 ,获得积分10
1分钟前
他忽然的人完成签到 ,获得积分10
1分钟前
hong关注了科研通微信公众号
1分钟前
HH发布了新的文献求助10
1分钟前
1分钟前
上官若男应助HH采纳,获得10
1分钟前
check003完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5279718
求助须知:如何正确求助?哪些是违规求助? 4434821
关于积分的说明 13805677
捐赠科研通 4314549
什么是DOI,文献DOI怎么找? 2368079
邀请新用户注册赠送积分活动 1363489
关于科研通互助平台的介绍 1326661