亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到 ,获得积分10
5秒前
博ge完成签到 ,获得积分10
9秒前
1分钟前
andrele应助科研通管家采纳,获得10
1分钟前
凤迎雪飘完成签到,获得积分10
1分钟前
赘婿应助Nikki采纳,获得10
1分钟前
Owen应助无心的土豆采纳,获得10
2分钟前
2分钟前
2分钟前
槛外人发布了新的文献求助10
2分钟前
哈哈完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
3分钟前
千早爱音发布了新的文献求助300
3分钟前
范ER完成签到 ,获得积分10
3分钟前
万能图书馆应助清爽伯云采纳,获得10
3分钟前
槛外人完成签到,获得积分10
3分钟前
Orange应助wqwweqwe采纳,获得10
4分钟前
dahai完成签到,获得积分10
4分钟前
4分钟前
4分钟前
清爽伯云发布了新的文献求助10
5分钟前
科研通AI6应助科研通管家采纳,获得10
5分钟前
wanci应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
gf完成签到 ,获得积分10
5分钟前
山野有雾都完成签到,获得积分10
5分钟前
5分钟前
阳光发布了新的文献求助10
5分钟前
5分钟前
5分钟前
范振杰发布了新的文献求助10
5分钟前
sissie发布了新的文献求助10
5分钟前
5分钟前
酷波er应助sissie采纳,获得10
6分钟前
嘿嘿应助灵巧伊采纳,获得10
6分钟前
Lshyong完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5357029
求助须知:如何正确求助?哪些是违规求助? 4488644
关于积分的说明 13972390
捐赠科研通 4389691
什么是DOI,文献DOI怎么找? 2411714
邀请新用户注册赠送积分活动 1404269
关于科研通互助平台的介绍 1378379