DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
落后秋柳完成签到,获得积分20
1秒前
Akim应助zz采纳,获得10
1秒前
2秒前
三九发布了新的文献求助10
3秒前
科研通AI5应助czq采纳,获得30
3秒前
4秒前
4秒前
4秒前
坦率的松完成签到,获得积分10
4秒前
传奇3应助贤惠的正豪采纳,获得10
5秒前
111发布了新的文献求助10
5秒前
三寒鸦完成签到,获得积分10
5秒前
小木棉发布了新的文献求助10
5秒前
5秒前
少年郎完成签到,获得积分20
6秒前
CipherSage应助123lura采纳,获得10
6秒前
七七完成签到,获得积分10
6秒前
科研通AI2S应助小余采纳,获得10
6秒前
苹果骑士完成签到,获得积分10
6秒前
6秒前
shi hui应助jbhb采纳,获得10
7秒前
7秒前
7秒前
JUSTs0so发布了新的文献求助10
7秒前
长夜变清早完成签到,获得积分10
8秒前
9秒前
9秒前
otaro发布了新的文献求助10
10秒前
yinbin完成签到,获得积分10
10秒前
10秒前
独木舟发布了新的文献求助10
10秒前
白衣未央发布了新的文献求助10
10秒前
脑洞疼应助现实的曼荷采纳,获得10
12秒前
12秒前
轩辕德地发布了新的文献求助10
12秒前
三九完成签到,获得积分10
13秒前
orixero应助少年郎采纳,获得10
13秒前
三金发布了新的文献求助10
13秒前
kuku发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762