DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lizhe发布了新的文献求助10
1秒前
张夏天发布了新的文献求助10
2秒前
Lucas应助kirirto采纳,获得10
2秒前
2秒前
小马甲应助研友_8y2G0L采纳,获得10
3秒前
3秒前
人物让人完成签到,获得积分10
3秒前
一只帅比发布了新的文献求助10
3秒前
omyga完成签到,获得积分10
4秒前
4秒前
俊逸山芙完成签到,获得积分10
4秒前
5秒前
苹果板栗完成签到,获得积分10
6秒前
健忘天问发布了新的文献求助10
6秒前
傲娇半山发布了新的文献求助10
7秒前
Zhou发布了新的文献求助30
8秒前
理想三寻发布了新的文献求助10
8秒前
9秒前
chenyutong发布了新的文献求助10
11秒前
11秒前
12秒前
feixiang发布了新的文献求助10
13秒前
14秒前
气泡水发布了新的文献求助10
15秒前
传奇3应助理想三寻采纳,获得10
15秒前
英俊的铭应助小茵茵采纳,获得10
16秒前
17秒前
kirirto发布了新的文献求助10
17秒前
17秒前
老中医发布了新的文献求助10
18秒前
18秒前
张夏天完成签到,获得积分20
18秒前
13679981516完成签到,获得积分10
19秒前
研友_8y2G0L发布了新的文献求助30
19秒前
20秒前
22秒前
深情安青应助xuhaohao采纳,获得30
22秒前
紫藤完成签到,获得积分10
22秒前
22秒前
GSirius发布了新的文献求助10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146272
求助须知:如何正确求助?哪些是违规求助? 2797641
关于积分的说明 7825012
捐赠科研通 2454032
什么是DOI,文献DOI怎么找? 1305957
科研通“疑难数据库(出版商)”最低求助积分说明 627630
版权声明 601503