DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渊_完成签到,获得积分10
刚刚
wkjfh应助时鹏飞采纳,获得10
1秒前
1秒前
汉堡包应助FOOL采纳,获得10
2秒前
3秒前
晴烟ZYM发布了新的文献求助30
3秒前
伍铭完成签到 ,获得积分10
4秒前
白桃枝完成签到,获得积分10
4秒前
丘比特应助谦让爆米花采纳,获得10
5秒前
minghanl完成签到,获得积分10
5秒前
6秒前
Olivia发布了新的文献求助30
6秒前
Lee发布了新的文献求助10
6秒前
郭子仪发布了新的文献求助10
6秒前
张旭卓完成签到,获得积分10
7秒前
8秒前
8秒前
活的在意完成签到,获得积分10
9秒前
研友_VZG7GZ应助MAD666采纳,获得10
9秒前
11秒前
luster完成签到 ,获得积分10
11秒前
11秒前
11秒前
水清木华发布了新的文献求助30
12秒前
Chang发布了新的文献求助10
12秒前
蒋念寒发布了新的文献求助10
13秒前
十三发布了新的文献求助20
13秒前
于啷啷完成签到,获得积分10
13秒前
Lc应助郭子仪采纳,获得10
14秒前
14秒前
yar应助筑城院采纳,获得10
14秒前
果子发布了新的文献求助10
15秒前
羽化成仙完成签到 ,获得积分10
15秒前
16秒前
夏尔酱发布了新的文献求助10
19秒前
氿囶发布了新的文献求助10
21秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
21秒前
22秒前
23秒前
科研通AI2S应助keyun采纳,获得30
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992117
求助须知:如何正确求助?哪些是违规求助? 3533123
关于积分的说明 11261129
捐赠科研通 3272496
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882717
科研通“疑难数据库(出版商)”最低求助积分说明 809425