清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
null应助科研通管家采纳,获得10
9秒前
null应助科研通管家采纳,获得10
9秒前
冷傲半邪完成签到,获得积分10
12秒前
21秒前
米歇尔发布了新的文献求助10
27秒前
灿烂而孤独的八戒完成签到 ,获得积分0
29秒前
35秒前
JamesPei应助耕牛热采纳,获得10
46秒前
两个榴莲完成签到,获得积分0
50秒前
59秒前
耕牛热完成签到,获得积分10
1分钟前
Veson发布了新的文献求助10
1分钟前
hwen1998完成签到 ,获得积分10
1分钟前
haihuhu完成签到 ,获得积分10
1分钟前
wanci应助Una采纳,获得10
1分钟前
1分钟前
ww完成签到,获得积分10
1分钟前
Una发布了新的文献求助10
1分钟前
5k全完成签到 ,获得积分10
1分钟前
Veson完成签到,获得积分10
1分钟前
null应助科研通管家采纳,获得10
2分钟前
领导范儿应助科研通管家采纳,获得10
2分钟前
hunajx完成签到,获得积分10
2分钟前
2分钟前
小米辣发布了新的文献求助30
2分钟前
2分钟前
Vicky完成签到 ,获得积分10
2分钟前
享受不良诱惑完成签到,获得积分10
2分钟前
Lny应助wuran采纳,获得10
3分钟前
anan完成签到,获得积分10
3分钟前
科研通AI2S应助wuran采纳,获得10
3分钟前
我是老大应助科研通管家采纳,获得10
4分钟前
激动的似狮完成签到,获得积分10
4分钟前
顾矜应助米歇尔采纳,获得10
4分钟前
毛毛完成签到,获得积分10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
米歇尔发布了新的文献求助10
4分钟前
米歇尔完成签到,获得积分20
4分钟前
样样发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569362
求助须知:如何正确求助?哪些是违规求助? 3991503
关于积分的说明 12355889
捐赠科研通 3663771
什么是DOI,文献DOI怎么找? 2019065
邀请新用户注册赠送积分活动 1053532
科研通“疑难数据库(出版商)”最低求助积分说明 941100