DuDoCAF: Dual-Domain Cross-Attention Fusion with Recurrent Transformer for Fast Multi-contrast MR Imaging

计算机科学 人工智能 计算机视觉 对比度(视觉) 混叠 模式识别(心理学) 迭代重建 欠采样
作者
Jun Lyu,Bin Sui,Chengyan Wang,Yapeng Tian,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 474-484 被引量:9
标识
DOI:10.1007/978-3-031-16446-0_45
摘要

Multi-contrast magnetic resonance imaging (MC-MRI) has been widely used for the diagnosis and characterization of tumors and lesions, as multi-contrast MR images are capable of providing complementary information for more comprehensive diagnosis and evaluation. However, it usually suffers from long scanning time to acquire multi-contrast MR images; in addition, long scanning time may lead to motion artifacts, degrading the image quality. Recently, many studies have proposed to employ the fully-sampled image of one contrast with short acquisition time to guide the reconstruction of the other contrast with long acquisition time so as to speed up the scanning. However, these studies still have two shortcomings. First, they simply concatenate the features of the two contrast images together without digging and leveraging the inherent and deep correlation between them. Second, as aliasing artifacts are complicated and non-local, sole image domain reconstruction with local dependencies is far from enough to eliminate these artifacts and achieve faithful reconstruction results. We present a novel Dual-Domain Cross-Attention Fusion (DuDoCAF) scheme with recurrent transformer to comprehensively address these shortcomings. Specifically, the proposed CAF scheme enables deep and effective fusion of features extracted from two modalities. The dual-domain recurrent learning allows our model to restore signals in both k-space and image domains, and hence more comprehensively remove the artifacts. In addition, we tame recurrent transformers to capture long-range dependencies from the fused feature maps to further enhance reconstruction performance. Extensive experiments on public fastMRI and clinical brain datasets demonstrate that the proposed DuDoCAF outperforms the state-of-the-art methods under different under-sampling patterns and acceleration rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dao发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
思源应助科研通管家采纳,获得30
4秒前
无花果应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
无极微光应助科研通管家采纳,获得20
4秒前
葉鳳怡完成签到 ,获得积分10
4秒前
5秒前
烟花应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
8秒前
orangel完成签到,获得积分10
9秒前
12秒前
小浣熊爱甜甜圈完成签到 ,获得积分10
12秒前
llllzzh完成签到 ,获得积分10
14秒前
孤独念柏完成签到,获得积分10
14秒前
酷波er应助seven采纳,获得10
15秒前
充电宝应助勤奋的草丛采纳,获得10
15秒前
15秒前
LXL完成签到,获得积分10
16秒前
chocolate发布了新的文献求助10
16秒前
16秒前
边婧韬完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
19秒前
Angora完成签到,获得积分10
19秒前
眉姐姐的藕粉桂花糖糕完成签到,获得积分10
20秒前
边婧韬发布了新的文献求助10
22秒前
Dvus完成签到,获得积分20
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4912095
求助须知:如何正确求助?哪些是违规求助? 4187304
关于积分的说明 13003664
捐赠科研通 3955373
什么是DOI,文献DOI怎么找? 2168696
邀请新用户注册赠送积分活动 1187211
关于科研通互助平台的介绍 1094459