A hybrid remote sensing approach for estimating chemical oxygen demand concentration in optically complex waters: A case study in inland lake waters in eastern China

环境科学 污染 化学需氧量 水质 卫星 生化需氧量 采样(信号处理) 水文学(农业) 遥感 环境工程 生态学 地质学 计算机科学 岩土工程 滤波器(信号处理) 废水 工程类 计算机视觉 生物 航空航天工程
作者
Xiaolan Cai,Yunmei Li,Shaohua Lei,Shuai Zeng,Zhihui Zhao,Heng Lyu,Xiaohan Dong,Junda Li,Huaijing Wang,Jie Xu,Yu Zhu,Luyao Wu,Xiuzhen Cheng
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:856: 158869-158869 被引量:10
标识
DOI:10.1016/j.scitotenv.2022.158869
摘要

Chemical oxygen demand concentration (CCOD) is widely used to indicate the degree of organic pollution of lakes, reservoirs and rivers. Mastering the spatiotemporal distribution of CCOD is imperative for understanding the variation mechanism and controlling of organic pollution in water. In this study, a hybrid approach suitable for Sentinel 3A/Ocean and Land Colour Instrument (OLCI) data was developed to estimate CCOD in inland optically complex waters embedding the interaction between CCOD and the absorption coefficients of optically active constituents (OACs). Based on in-situ sampling in different waters, the independent validations of the proposed model performed satisfactorily in Lake Taihu (MAPE = 23.52 %, RMSE = 0.95 mg/L, and R2 = 0.81), Lake Qiandaohu (MAPE = 21.63 %, RMSE = 0.50 mg/L and R2 = 0.69), and Yangtze River (MAPE = 29.34 %, RMSE = 0.83 mg/L, and R2 = 0.64). In addition, the approach not only showed significant superiority compared with previous algorithms, but also was suitable for other common satellite sensors equipped same or similar bands. The hybrid approach was applied to OLCI images to retrieve CCOD of Lake Taihu from 2016 to 2020 and reveals substantial interannual and seasonal variations. The above results indicate that the proposed approach is effective and stable for studying spatiotemporal dynamic of CCOD in optically complex waters, and that satellite-derived products can provide reliable information for lake water quality management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
wjj发布了新的文献求助10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
彭于晏应助鱼与树采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
Orange应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
xiuxiu_27发布了新的文献求助10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
猪猪hero发布了新的文献求助10
1秒前
1秒前
思源应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得30
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
剑兰先生应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
Gaoge发布了新的文献求助10
3秒前
kimoto完成签到 ,获得积分10
4秒前
Tsuki完成签到,获得积分10
4秒前
4秒前
孙瞳完成签到,获得积分10
4秒前
小池同学完成签到,获得积分10
5秒前
JamesPei应助大白采纳,获得10
5秒前
mi发布了新的文献求助10
6秒前
小夭完成签到,获得积分10
6秒前
畅快自行车完成签到 ,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678