Multimodal attention-based deep learning for Alzheimer’s disease diagnosis

模式 计算机科学 人工智能 认知 模态(人机交互) 机器学习 集合(抽象数据类型) 深度学习 认知心理学 心理学 神经科学 社会科学 社会学 程序设计语言
作者
Michal Golovanevsky,Carsten Eickhoff,Ritambhara Singh
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:29 (12): 2014-2022 被引量:18
标识
DOI:10.1093/jamia/ocac168
摘要

Alzheimer's disease (AD) is the most common neurodegenerative disorder with one of the most complex pathogeneses, making effective and clinically actionable decision support difficult. The objective of this study was to develop a novel multimodal deep learning framework to aid medical professionals in AD diagnosis.We present a Multimodal Alzheimer's Disease Diagnosis framework (MADDi) to accurately detect the presence of AD and mild cognitive impairment (MCI) from imaging, genetic, and clinical data. MADDi is novel in that we use cross-modal attention, which captures interactions between modalities-a method not previously explored in this domain. We perform multi-class classification, a challenging task considering the strong similarities between MCI and AD. We compare with previous state-of-the-art models, evaluate the importance of attention, and examine the contribution of each modality to the model's performance.MADDi classifies MCI, AD, and controls with 96.88% accuracy on a held-out test set. When examining the contribution of different attention schemes, we found that the combination of cross-modal attention with self-attention performed the best, and no attention layers in the model performed the worst, with a 7.9% difference in F1-scores.Our experiments underlined the importance of structured clinical data to help machine learning models contextualize and interpret the remaining modalities. Extensive ablation studies showed that any multimodal mixture of input features without access to structured clinical information suffered marked performance losses.This study demonstrates the merit of combining multiple input modalities via cross-modal attention to deliver highly accurate AD diagnostic decision support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助木cheng采纳,获得10
1秒前
1秒前
科研通AI2S应助Stella采纳,获得10
3秒前
缥缈逍遥完成签到 ,获得积分10
4秒前
陈易发布了新的文献求助10
5秒前
5秒前
将将发布了新的文献求助30
7秒前
细心孤丹完成签到,获得积分10
7秒前
雨的前世完成签到,获得积分10
8秒前
无花果应助八大山人采纳,获得10
8秒前
喵喵完成签到,获得积分10
9秒前
9秒前
9秒前
NexusExplorer应助dongli0616采纳,获得30
9秒前
10秒前
熊熊完成签到 ,获得积分10
12秒前
大鹏发布了新的文献求助10
12秒前
快哒哒哒完成签到,获得积分10
15秒前
脑洞疼应助cmclara采纳,获得10
15秒前
上官若男应助LC采纳,获得10
16秒前
16秒前
英姑应助up采纳,获得30
18秒前
18秒前
时尚的立诚完成签到,获得积分10
19秒前
丘比特应助ttt采纳,获得10
19秒前
21秒前
22秒前
八大山人发布了新的文献求助10
23秒前
今天你学习了吗完成签到,获得积分10
24秒前
24秒前
ZG完成签到,获得积分10
25秒前
小马甲应助123采纳,获得10
27秒前
28秒前
可可萝oxo发布了新的文献求助10
28秒前
陈预立发布了新的文献求助10
29秒前
30秒前
31秒前
边伯贤发布了新的文献求助10
32秒前
NiS发布了新的文献求助10
35秒前
丸子完成签到,获得积分10
38秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228