光热治疗
免疫系统
肿瘤微环境
癌症研究
肿瘤缺氧
材料科学
联合疗法
化学
医学
纳米技术
放射治疗
免疫学
药理学
内科学
作者
Xinyu Li,Yong Gao,XinZheng Liu,XiaoQian Hu,YunMeng Li,JunXi Sun,PingYu Wang,Hongkai Wu,HaeWon Kim,Murugan Ramalingam,Songqiang Xie,RanRan Wang
标识
DOI:10.3389/fbioe.2022.1005520
摘要
The combination of photothermal therapy (PTT) and immune tumor therapy has emerged as a promising avenue for cancer treatment. However, the insufficient immune response caused by inefficient immunogenic cell death (ICD) inducers and thermal resistance, immunosuppression, and immune escape resulting from the hypoxic microenvironment of solid tumors severely limit its efficacy. Herein, we report an ultrasound and laser-promoted dual-gas nano-generator (calcium carbonate-polydopamine-manganese oxide nanoparticles, CPM NPs) for enhanced photothermal/immune tumor therapy through reprogramming tumor hypoxic microenvironment. In this system, CPM NPs undergo reactive decomposition in a moderately acidic tumor, resulting in the generation of calcium, manganese ions, carbon dioxide (CO2), and oxygen (O2). Calcium and manganese ions act as adjuvants that trigger an immune response. The cancer cell membrane rupture caused by sudden burst of bubbles (CO2 and O2) under ultrasound stimulation and the photothermal properties of PDA also contributed to the ICD effect. The generation of O2 alleviates tumor hypoxia and thus reduces hypoxia-induced heat resistance and immunosuppressive effects, thereby improving the therapeutic efficacy of combination PTT and immune therapy. The present study provides a novel approach for the fabrication of a safe and effective tumor treatment platform for future clinical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI