Machine Learning-Based Label-Free SERS Profiling of Exosomes for Accurate Fuzzy Diagnosis of Cancer and Dynamic Monitoring of Drug Therapeutic Processes

微泡 化学 癌细胞 赫拉 癌症 外体 生物医学 细胞 癌症研究 纳米技术 计算生物学 人工智能 计算机科学 生物信息学 小RNA 材料科学 医学 生物 生物化学 内科学 基因
作者
Xingkang Diao,Xinli Li,Shuping Hou,Haijuan Li,Guohua Qi,Yongdong Jin
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (19): 7552-7559 被引量:42
标识
DOI:10.1021/acs.analchem.3c00026
摘要

Exosomes are a class of extracellular vesicles secreted by cells, which can be used as promising noninvasive biomarkers for the early diagnosis and treatment of diseases, especially cancer. However, due to the heterogeneity of exosomes, it remains a grand challenge to distinguish accurately and reliably exosomes from clinical samples. Herein, we achieve accurate fuzzy discrimination of exosomes from human serum samples for accurate diagnosis of breast cancer and cervical cancer through machine learning-based label-free surface-enhanced Raman spectroscopy (SERS), by using "hot spot" rich 3D plasmonic AuNPs nanomembranes as substrates. Due to the existence of some weak distinguishable SERS fingerprint signals and the high sensitivity of the method, the machine learning-based SERS analysis can precisely identify three (normal and cancerous) cell lines, two of which are different types of cancer cells, without specific labeling of biomarkers. The prediction accuracy based on the machine learning algorithm was up to 91.1% for the discrimination of different cell lines (H8, HeLa, and MCF-7 cell)-derived exosomes. Our model trained with SERS spectra of cell-derived exosomes could reach 93.3% prediction accuracy for clinical samples. Furthermore, the action mechanism of the chemotherapeutic process of MCF-7 cells can be revealed by dynamic monitoring of SERS profiling of the exosomes secreted. The method would be useful for noninvasive and accurate diagnosis and postoperative assessment of cancer or other diseases in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
俭朴的猫咪完成签到,获得积分20
4秒前
共享精神应助司阔林采纳,获得10
5秒前
吃猫的鱼发布了新的文献求助10
6秒前
6秒前
7秒前
dummer发布了新的文献求助10
8秒前
9秒前
呆萌的忆山发布了新的文献求助100
12秒前
nwj123654发布了新的文献求助10
13秒前
18秒前
18秒前
nwj123654完成签到,获得积分10
18秒前
20秒前
科目三应助有缘采纳,获得10
21秒前
chloe完成签到,获得积分10
22秒前
幻月发布了新的文献求助20
22秒前
略略发布了新的文献求助10
23秒前
geigeigei完成签到,获得积分10
24秒前
苹果忆彤发布了新的文献求助10
24秒前
俏皮诺言发布了新的文献求助10
25秒前
任性的傲柏完成签到,获得积分10
26秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
脑洞疼应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
wanci应助科研通管家采纳,获得30
27秒前
27秒前
redondo10完成签到,获得积分0
28秒前
30秒前
岁月如酒完成签到,获得积分10
30秒前
俭朴的一曲完成签到,获得积分10
31秒前
wankai发布了新的文献求助10
31秒前
32秒前
朴实如冰发布了新的文献求助10
32秒前
33秒前
听话的靖柏完成签到 ,获得积分10
35秒前
赘婿应助鲤鱼远望采纳,获得10
36秒前
redondo5完成签到,获得积分10
36秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340648
求助须知:如何正确求助?哪些是违规求助? 2968587
关于积分的说明 8634210
捐赠科研通 2648088
什么是DOI,文献DOI怎么找? 1450009
科研通“疑难数据库(出版商)”最低求助积分说明 671632
邀请新用户注册赠送积分活动 660693