Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guoming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier BV]
卷期号:51: 794-806 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助南宫书瑶采纳,获得10
1秒前
2秒前
whatever发布了新的文献求助10
3秒前
orixero应助小新采纳,获得10
3秒前
DDDDDU发布了新的文献求助30
4秒前
4秒前
5秒前
Zzl0281发布了新的文献求助10
5秒前
清爽冰夏发布了新的文献求助10
8秒前
9秒前
9秒前
蓝莓西西果冻完成签到 ,获得积分10
11秒前
12秒前
丘比特应助小时采纳,获得10
12秒前
无尽夏发布了新的文献求助10
13秒前
爆米花应助tw0125采纳,获得10
13秒前
cyt9999发布了新的文献求助20
14秒前
14秒前
whatever完成签到,获得积分10
15秒前
15秒前
故意的严青完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
Gump发布了新的文献求助10
17秒前
搞怪灯泡完成签到,获得积分10
18秒前
比耶发布了新的文献求助10
18秒前
19秒前
无尽夏完成签到,获得积分10
21秒前
晓晓马儿发布了新的文献求助10
21秒前
大个应助陈陈采纳,获得10
21秒前
今昔完成签到,获得积分10
21秒前
22秒前
cy发布了新的文献求助10
22秒前
23秒前
追梦完成签到,获得积分10
23秒前
经过发布了新的文献求助10
23秒前
23秒前
曲鸿博发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003393
求助须知:如何正确求助?哪些是违规求助? 4248127
关于积分的说明 13235358
捐赠科研通 4047157
什么是DOI,文献DOI怎么找? 2214214
邀请新用户注册赠送积分活动 1224290
关于科研通互助平台的介绍 1144540