Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guoming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 794-806 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Echo完成签到,获得积分10
刚刚
刚刚
害羞的衫发布了新的文献求助10
2秒前
踏实水之发布了新的文献求助10
2秒前
陈露佳发布了新的文献求助10
3秒前
3秒前
牛油果发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助科研爱好者采纳,获得10
3秒前
木木三完成签到 ,获得积分10
4秒前
优秀的小蚂蚁完成签到,获得积分10
4秒前
搜集达人应助sikang采纳,获得10
5秒前
5秒前
llm19完成签到,获得积分10
5秒前
sssjjjxx完成签到,获得积分20
5秒前
imi发布了新的文献求助10
6秒前
天天快乐应助Koi采纳,获得10
6秒前
谢谢大佬完成签到,获得积分10
7秒前
深情安青应助夏沫星星球采纳,获得10
7秒前
keanu发布了新的文献求助10
8秒前
8秒前
木木三关注了科研通微信公众号
8秒前
华仔应助Zzzz采纳,获得10
8秒前
害羞的衫完成签到,获得积分10
8秒前
9秒前
拼搏迎梦完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
11秒前
12秒前
tangcan发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
13秒前
科研通AI6.1应助阿悦采纳,获得30
14秒前
15秒前
阿Q完成签到,获得积分10
16秒前
南桃发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762181
求助须知:如何正确求助?哪些是违规求助? 5534311
关于积分的说明 15402288
捐赠科研通 4898393
什么是DOI,文献DOI怎么找? 2634850
邀请新用户注册赠送积分活动 1583000
关于科研通互助平台的介绍 1538201