Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guoming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 794-806 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
3秒前
sht发布了新的文献求助10
3秒前
3秒前
Victoria发布了新的文献求助10
4秒前
范占豪发布了新的文献求助10
4秒前
5秒前
5秒前
感谢牛的兄弟转发科研通微信,获得积分50
6秒前
小僧发布了新的文献求助10
7秒前
biyeshunli发布了新的文献求助10
8秒前
领导范儿应助CaptainL采纳,获得10
10秒前
10秒前
感谢Wynne转发科研通微信,获得积分50
11秒前
懒洋洋发布了新的文献求助10
11秒前
科研波比发布了新的文献求助10
12秒前
三七完成签到,获得积分20
12秒前
朴素的小霸王完成签到 ,获得积分10
12秒前
13秒前
magiczhu完成签到,获得积分10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
感谢丁丁车转发科研通微信,获得积分50
16秒前
小马甲应助Arrebol采纳,获得10
17秒前
lzh发布了新的文献求助10
18秒前
18秒前
19秒前
逐梦深蓝发布了新的文献求助10
20秒前
完美世界应助骤雨红尘采纳,获得10
20秒前
常常完成签到,获得积分0
20秒前
QeTuO关注了科研通微信公众号
20秒前
20秒前
等待的从安完成签到 ,获得积分10
21秒前
21秒前
感谢zzzzzz转发科研通微信,获得积分50
22秒前
22秒前
飞机完成签到,获得积分10
22秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771127
求助须知:如何正确求助?哪些是违规求助? 5589626
关于积分的说明 15426564
捐赠科研通 4904445
什么是DOI,文献DOI怎么找? 2638788
邀请新用户注册赠送积分活动 1586567
关于科研通互助平台的介绍 1541713