已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guoming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 794-806 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助cai采纳,获得10
刚刚
2秒前
2秒前
有趣的银完成签到,获得积分10
3秒前
momo完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
7秒前
可爱邓邓完成签到 ,获得积分10
8秒前
10秒前
两个轮发布了新的文献求助10
10秒前
靖旎发布了新的文献求助10
12秒前
Aaron完成签到 ,获得积分10
13秒前
灵巧伊发布了新的文献求助10
14秒前
紧张的书文完成签到 ,获得积分10
15秒前
走啊走应助Leslie采纳,获得30
19秒前
21秒前
21秒前
Matberry完成签到 ,获得积分10
22秒前
shinn发布了新的文献求助10
22秒前
23秒前
24秒前
娟娟完成签到 ,获得积分10
25秒前
芋泥发布了新的文献求助10
26秒前
26秒前
28秒前
33秒前
无恙完成签到,获得积分10
33秒前
金条完成签到,获得积分10
35秒前
佳佳发布了新的文献求助10
36秒前
iorpi完成签到,获得积分10
36秒前
南宫硕完成签到 ,获得积分10
37秒前
ff发布了新的文献求助10
38秒前
Owen应助YUE采纳,获得10
38秒前
KAZEN完成签到 ,获得积分10
40秒前
高贵碧凡完成签到 ,获得积分10
41秒前
两个轮完成签到,获得积分10
42秒前
缺心眼儿完成签到,获得积分10
43秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705551
求助须知:如何正确求助?哪些是违规求助? 5164845
关于积分的说明 15245734
捐赠科研通 4859361
什么是DOI,文献DOI怎么找? 2607785
邀请新用户注册赠送积分活动 1558875
关于科研通互助平台的介绍 1516424