Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guoming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 794-806 被引量:16
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助123采纳,获得10
2秒前
一支卓发布了新的文献求助10
2秒前
华仔应助yun采纳,获得10
2秒前
cyskdsn完成签到 ,获得积分10
3秒前
勤H完成签到,获得积分10
5秒前
天涯明月刀完成签到,获得积分10
5秒前
星星完成签到,获得积分10
7秒前
7秒前
KONG完成签到,获得积分10
8秒前
9秒前
静静在学呢完成签到,获得积分10
10秒前
兆兆发布了新的文献求助10
10秒前
11秒前
浮游应助一支卓采纳,获得10
11秒前
受伤听露完成签到 ,获得积分10
11秒前
慕青应助怕黑剑封采纳,获得10
12秒前
12秒前
德玛西亚发布了新的文献求助10
12秒前
HHW发布了新的文献求助10
12秒前
奋斗思烟完成签到 ,获得积分10
13秒前
自由的微风完成签到,获得积分10
15秒前
linkman发布了新的文献求助200
15秒前
木子完成签到,获得积分10
16秒前
小房子完成签到,获得积分10
18秒前
Nolan完成签到,获得积分10
18秒前
贪玩板栗发布了新的文献求助10
18秒前
20秒前
21秒前
甜甜的平蓝完成签到,获得积分10
22秒前
23秒前
23秒前
潇洒飞丹完成签到,获得积分10
24秒前
26秒前
27秒前
27秒前
Baywreath完成签到,获得积分10
28秒前
竹筏过海应助Lei采纳,获得30
28秒前
马皓发布了新的文献求助10
28秒前
29秒前
田字格发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714