Real-time hydrogen release and dispersion modelling of hydrogen refuelling station by using deep learning probability approach

羽流 蒙特卡罗方法 计算机科学 色散(光学) 贝叶斯推理 水准点(测量) 易燃液体 环境科学 气象学 模拟 贝叶斯概率 算法 人工智能 统计 化学 物理 地质学 数学 光学 有机化学 大地测量学
作者
Junjie Li,Weikang Xie,Huihao Li,Xiaoyuan Qian,Jihao Shi,Zonghao Xie,Qing Wang,Xinqi Zhang,Guo-Ming Chen
出处
期刊:International Journal of Hydrogen Energy [Elsevier]
卷期号:51: 794-806 被引量:8
标识
DOI:10.1016/j.ijhydene.2023.04.126
摘要

Hydrogen release and dispersion from hydrogen refuelling stations have the potential to cause explosion disaster and bring significant causalities and economic losses to the surroundings. Real-time spatial hydrogen plume concentration prediction is essential for the quick emergency response planning to dissipate such flammable vapor cloud and prevent explosion disaster. Deep learning approaches have recently been applied to real-time gas release and dispersion modeling, however, are 'over-confident' for spatial plume concentration and boundary estimation, which could not support the robust decision-makings. This study proposes a hybrid deep probability learning-based spatial hydrogen plume concentration prediction model, namely DPL_H2Plume by integrating deep learning and Variational Bayesian Inference. Numerical model of hydrogen release and dispersion from hydrogen refuelling station is built to construct the benchmark dataset. By using such dataset, two pre-defined parameters, namely Monte Carlo sampling number m = 300 and dropout probability p = 0.1 are determined to ensure the model's tradeoff between inference accuracy and efficiency. Comparison between our proposed model and the state-of-the-art model is also conducted. The results demonstrate that our model exhibits a competitive accuracy of R2 = 0.97 as well as an inference time 3.32 s. In addition, our model gives the comprehensive estimations including not only spatial hydrogen plume concentration but also its uncertainty. Also, our model provides the more accurate estimation at plume boundary compared to the state-of-the-art model. Overall, our proposed model could provide reliable alternative for constructing a digital twin for emergency management of hydrogen refuelling station.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鹿雅彤发布了新的文献求助10
5秒前
天舞英姿发布了新的文献求助10
6秒前
zp完成签到,获得积分10
7秒前
桐桐应助顺心的水之采纳,获得10
10秒前
JamesPei应助冰糖胡芦采纳,获得10
12秒前
天舞英姿完成签到,获得积分10
14秒前
xinxin完成签到,获得积分10
14秒前
hcd12138完成签到,获得积分10
15秒前
调皮的蓝天完成签到,获得积分10
16秒前
16秒前
复杂心情完成签到,获得积分20
16秒前
天天小女孩完成签到 ,获得积分10
17秒前
摘星012完成签到 ,获得积分10
17秒前
18秒前
爆米花应助简单刺猬采纳,获得10
21秒前
定西发布了新的文献求助10
21秒前
路鹿鹿完成签到,获得积分20
24秒前
阔达觅海完成签到,获得积分20
25秒前
思源应助小小邱采纳,获得10
26秒前
无心的闭月完成签到,获得积分10
26秒前
kubi完成签到 ,获得积分10
27秒前
搜集达人应助whx99222采纳,获得10
29秒前
31秒前
zp发布了新的文献求助10
33秒前
简单刺猬完成签到,获得积分10
33秒前
所所应助鱼粥很好采纳,获得10
33秒前
李大宝完成签到 ,获得积分10
33秒前
现代青枫应助Qian采纳,获得30
34秒前
可爱的函函应助muye采纳,获得10
35秒前
ding应助刘波儿刘海儿留疤采纳,获得10
35秒前
35秒前
简单刺猬发布了新的文献求助10
35秒前
36秒前
38秒前
风槿完成签到 ,获得积分10
38秒前
38秒前
39秒前
39秒前
joey完成签到,获得积分10
39秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180770
求助须知:如何正确求助?哪些是违规求助? 2830980
关于积分的说明 7982408
捐赠科研通 2492814
什么是DOI,文献DOI怎么找? 1329855
科研通“疑难数据库(出版商)”最低求助积分说明 635802
版权声明 602954