Mendelian randomization analysis does not reveal a causal influence of mental diseases on osteoporosis

孟德尔随机化 观察研究 医学 骨质疏松症 内科学 肿瘤科 物理疗法 生物 遗传学 遗传变异 基因 基因型
作者
Fen Tang,Sheng Wang,Hongxia Zhao,Demeng Xia,Xinyong Dong
出处
期刊:Frontiers in Endocrinology [Frontiers Media SA]
卷期号:14 被引量:4
标识
DOI:10.3389/fendo.2023.1125427
摘要

Osteoporosis (OP) is primarily diagnosed through bone mineral density (BMD) measurements, and it often leads to fracture. Observational studies suggest that several mental diseases (MDs) may be linked to OP, but the causal direction of these associations remain unclear. This study aims to explore the potential causal association between five MDs (Schizophrenia, Depression, Alzheimer's disease, Parkinson's disease, and Epilepsy) and the risk of OP.First, single-nucleotide polymorphisms (SNPs) were filtered from summary-level genome-wide association studies using quality control measures. Subsequently, we employed two-sample Mendelian randomization (MR) analysis to indirectly analyze the causal effect of MDs on the risk of OP through bone mineral density (in total body, femoral neck, lumbar spine, forearm, and heel) and fractures (in leg, arm, heel, spine, and osteoporotic fractures). Lastly, the causal effect of the MDs on the risk of OP was evaluated directly through OP. MR analysis was performed using several methods, including inverse variance weighting (IVW)-random effects, IVW-fixed effects, maximum likelihood, weighted median, MR-Egger regression, and penalized weighted median.The results did not show any evidence of a causal relationship between MDs and the risk of OP (with almost all P values > 0.05). The robustness of the above results was proved to be good.In conclusion, this study did not find evidence supporting the claim that MDs have a definitive impact on the risk of OP, which contradicts many existing observational reports. Further studies are needed to determine the potential mechanisms of the associations observed in observational studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8个老登发布了新的文献求助10
1秒前
1秒前
hhy完成签到,获得积分10
1秒前
孙一雯发布了新的文献求助30
2秒前
2秒前
Xxxnnian完成签到,获得积分20
3秒前
fancy发布了新的文献求助10
3秒前
apple完成签到,获得积分10
3秒前
3秒前
oldlee发布了新的文献求助10
4秒前
斜杠武发布了新的文献求助10
4秒前
毕业就好发布了新的文献求助10
4秒前
wusanlinshi完成签到,获得积分20
5秒前
娜行发布了新的文献求助10
5秒前
大雄完成签到,获得积分10
5秒前
kai发布了新的文献求助10
6秒前
科研通AI5应助老西瓜采纳,获得10
6秒前
核弹完成签到 ,获得积分10
6秒前
kevin完成签到,获得积分10
7秒前
Chem is try发布了新的文献求助10
7秒前
皖医梁朝伟完成签到 ,获得积分10
7秒前
汉堡包应助野性的南蕾采纳,获得10
7秒前
7秒前
便宜小师傅完成签到 ,获得积分10
8秒前
霏冉完成签到,获得积分10
8秒前
9秒前
Grayball应助包容的剑采纳,获得10
9秒前
董小天天完成签到,获得积分10
9秒前
9秒前
华仔应助qym采纳,获得10
9秒前
琅琊为刃完成签到,获得积分10
10秒前
酷波er应助hhh采纳,获得10
10秒前
10秒前
小巧的香氛完成签到 ,获得积分10
11秒前
11秒前
11秒前
zxcv23发布了新的文献求助10
11秒前
没有名称发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672