已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GeSANet: Geospatial-Awareness Network for VHR Remote Sensing Image Change Detection

地理空间分析 高光谱成像 计算机科学 变更检测 遥感 特征提取 图像分辨率 人工智能 特征(语言学) 数据挖掘 模式识别(心理学) 计算机视觉 地理 语言学 哲学
作者
Xiaoyang Zhao,Keyun Zhao,Siyao Li,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3272550
摘要

The characteristics of very high resolution (VHR) remote sensing images (RSIs) have higher spatial resolution inherently, and are easier to obtain globally compared with hyperspectral images (HSIs), making it possible to detect small-scale land cover changes in multiple applications. RSI change detection (RSI-CD) based on deep learning has been paid attention to and become a frontier research field in recent years, and is currently facing two challenging problems: The first is high dependence on registration between bi-temporal images caused by high spatial resolution; The other is high pseudo-change information response caused by low spectral resolution. In order to address the above-mentioned two problems, a novel RSI-CD framework called Geospatial-Awareness Network (GeSANet) based on the geospatial Position Matching Mechanism (PMM) with multi-level adjustment and the geo-spatial Content Reasoning Mechanism (CRM) with diverse pseudo-change information filtering is proposed. First of all, the PMM assigns independent two-dimensional offset coordinates to each position in the previous temporal image, afterwards, bilinear interpolation is employed to obtain the subpixel feature value after the offset, and the sparse results based on the difference are transmitted to the next level prediction to realize multi-level geospatial correction. The CRM extracts global features from the corrected sparse feature map in terms of dimensions, implementing effective discriminant feature extraction on basis of the original feature map in a stepwise refinement manner through the cross-dimension exchange mechanism, to filter out various pseudo-change information as well as maintain real change information. Comparison experiments with five recent SOTA methods are carried out on two popular datasets with diverse changes, the results show that the proposed method has good robustness and validity for multi-temporal RSI-CD. In particular, it has a strong comparative advantage in detecting small entity changes and edge details. The source code of the proposed framework can be downloaded from https://github.com/zxylnnu/GeSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拂晓完成签到,获得积分10
1秒前
NOTHING完成签到 ,获得积分10
2秒前
Persist6578完成签到 ,获得积分10
5秒前
我爱科研完成签到 ,获得积分10
6秒前
Calyn完成签到 ,获得积分10
7秒前
隐形曼青应助拂晓采纳,获得10
8秒前
科研通AI2S应助reck采纳,获得10
13秒前
俗人应助科研通管家采纳,获得30
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
tuanheqi应助科研通管家采纳,获得30
19秒前
morena应助科研通管家采纳,获得10
19秒前
舒适的方盒完成签到 ,获得积分10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
Jasper应助科研通管家采纳,获得10
19秒前
19秒前
酷波er应助科研通管家采纳,获得10
20秒前
20秒前
东拉西扯完成签到,获得积分10
20秒前
Persist完成签到 ,获得积分10
20秒前
77完成签到 ,获得积分10
20秒前
orixero应助umi99采纳,获得10
22秒前
24秒前
123木头人完成签到,获得积分10
26秒前
TH发布了新的文献求助10
31秒前
32秒前
彦子完成签到 ,获得积分10
33秒前
34秒前
大气问枫发布了新的文献求助10
39秒前
邓豪完成签到 ,获得积分10
40秒前
42秒前
pupi完成签到 ,获得积分10
43秒前
大气问枫完成签到,获得积分10
45秒前
beloved完成签到 ,获得积分10
47秒前
49秒前
三叔完成签到,获得积分0
51秒前
拂晓发布了新的文献求助10
53秒前
稚气满满完成签到 ,获得积分10
55秒前
斯皮克完成签到,获得积分10
59秒前
Wish完成签到,获得积分10
1分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238680
求助须知:如何正确求助?哪些是违规求助? 2884066
关于积分的说明 8232503
捐赠科研通 2552149
什么是DOI,文献DOI怎么找? 1380525
科研通“疑难数据库(出版商)”最低求助积分说明 649037
邀请新用户注册赠送积分活动 624725