亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GeSANet: Geospatial-Awareness Network for VHR Remote Sensing Image Change Detection

地理空间分析 高光谱成像 计算机科学 变更检测 遥感 特征提取 图像分辨率 人工智能 特征(语言学) 数据挖掘 模式识别(心理学) 计算机视觉 地理 语言学 哲学
作者
Xiaoyang Zhao,Keyun Zhao,Siyao Li,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3272550
摘要

The characteristics of very high resolution (VHR) remote sensing images (RSIs) have higher spatial resolution inherently, and are easier to obtain globally compared with hyperspectral images (HSIs), making it possible to detect small-scale land cover changes in multiple applications. RSI change detection (RSI-CD) based on deep learning has been paid attention to and become a frontier research field in recent years, and is currently facing two challenging problems: The first is high dependence on registration between bi-temporal images caused by high spatial resolution; The other is high pseudo-change information response caused by low spectral resolution. In order to address the above-mentioned two problems, a novel RSI-CD framework called Geospatial-Awareness Network (GeSANet) based on the geospatial Position Matching Mechanism (PMM) with multi-level adjustment and the geo-spatial Content Reasoning Mechanism (CRM) with diverse pseudo-change information filtering is proposed. First of all, the PMM assigns independent two-dimensional offset coordinates to each position in the previous temporal image, afterwards, bilinear interpolation is employed to obtain the subpixel feature value after the offset, and the sparse results based on the difference are transmitted to the next level prediction to realize multi-level geospatial correction. The CRM extracts global features from the corrected sparse feature map in terms of dimensions, implementing effective discriminant feature extraction on basis of the original feature map in a stepwise refinement manner through the cross-dimension exchange mechanism, to filter out various pseudo-change information as well as maintain real change information. Comparison experiments with five recent SOTA methods are carried out on two popular datasets with diverse changes, the results show that the proposed method has good robustness and validity for multi-temporal RSI-CD. In particular, it has a strong comparative advantage in detecting small entity changes and edge details. The source code of the proposed framework can be downloaded from https://github.com/zxylnnu/GeSANet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助heisa采纳,获得10
24秒前
科研通AI6应助cllk采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
Freya1528完成签到,获得积分10
3分钟前
Freya1528发布了新的文献求助10
3分钟前
彭于晏应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
大男完成签到,获得积分10
4分钟前
5分钟前
阳光强炫发布了新的文献求助10
5分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
Hello应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
锦城纯契完成签到 ,获得积分10
6分钟前
HuanChen完成签到 ,获得积分10
6分钟前
阳光强炫关注了科研通微信公众号
6分钟前
否定之否定发布了新的文献求助200
7分钟前
shi hui应助白华苍松采纳,获得10
9分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
shhoing应助科研通管家采纳,获得10
10分钟前
慕青应助calmxp采纳,获得10
10分钟前
11分钟前
calmxp发布了新的文献求助10
11分钟前
白华苍松完成签到,获得积分10
11分钟前
11分钟前
sakura发布了新的文献求助10
12分钟前
12分钟前
pinklay完成签到 ,获得积分10
12分钟前
poki完成签到 ,获得积分10
12分钟前
wwee发布了新的文献求助10
12分钟前
天天快乐应助wwee采纳,获得10
13分钟前
小橙子发布了新的文献求助10
13分钟前
sakura完成签到,获得积分10
13分钟前
笔墨留香完成签到,获得积分10
13分钟前
shhoing应助科研通管家采纳,获得10
14分钟前
ZZZ完成签到,获得积分10
14分钟前
锅架了完成签到 ,获得积分10
14分钟前
14分钟前
大个应助小橙子采纳,获得10
15分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558600
求助须知:如何正确求助?哪些是违规求助? 4643677
关于积分的说明 14671337
捐赠科研通 4584970
什么是DOI,文献DOI怎么找? 2515285
邀请新用户注册赠送积分活动 1489353
关于科研通互助平台的介绍 1460100