已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GeSANet: Geospatial-Awareness Network for VHR Remote Sensing Image Change Detection

地理空间分析 高光谱成像 计算机科学 变更检测 遥感 特征提取 图像分辨率 人工智能 特征(语言学) 数据挖掘 模式识别(心理学) 计算机视觉 地理 语言学 哲学
作者
Xiaoyang Zhao,Keyun Zhao,Siyao Li,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3272550
摘要

The characteristics of very high resolution (VHR) remote sensing images (RSIs) have higher spatial resolution inherently, and are easier to obtain globally compared with hyperspectral images (HSIs), making it possible to detect small-scale land cover changes in multiple applications. RSI change detection (RSI-CD) based on deep learning has been paid attention to and become a frontier research field in recent years, and is currently facing two challenging problems: The first is high dependence on registration between bi-temporal images caused by high spatial resolution; The other is high pseudo-change information response caused by low spectral resolution. In order to address the above-mentioned two problems, a novel RSI-CD framework called Geospatial-Awareness Network (GeSANet) based on the geospatial Position Matching Mechanism (PMM) with multi-level adjustment and the geo-spatial Content Reasoning Mechanism (CRM) with diverse pseudo-change information filtering is proposed. First of all, the PMM assigns independent two-dimensional offset coordinates to each position in the previous temporal image, afterwards, bilinear interpolation is employed to obtain the subpixel feature value after the offset, and the sparse results based on the difference are transmitted to the next level prediction to realize multi-level geospatial correction. The CRM extracts global features from the corrected sparse feature map in terms of dimensions, implementing effective discriminant feature extraction on basis of the original feature map in a stepwise refinement manner through the cross-dimension exchange mechanism, to filter out various pseudo-change information as well as maintain real change information. Comparison experiments with five recent SOTA methods are carried out on two popular datasets with diverse changes, the results show that the proposed method has good robustness and validity for multi-temporal RSI-CD. In particular, it has a strong comparative advantage in detecting small entity changes and edge details. The source code of the proposed framework can be downloaded from https://github.com/zxylnnu/GeSANet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高贵的冰旋完成签到 ,获得积分10
1秒前
皮球完成签到,获得积分10
1秒前
英姑应助yjj采纳,获得10
1秒前
2秒前
菁菁业业完成签到,获得积分10
3秒前
科研通AI6应助YueYue采纳,获得10
4秒前
4秒前
佚名发布了新的文献求助10
5秒前
高高的采蓝完成签到,获得积分20
6秒前
7秒前
彭于晏应助zimo采纳,获得10
7秒前
潜心如水发布了新的文献求助10
7秒前
9秒前
12秒前
ROSA完成签到,获得积分10
12秒前
yjj发布了新的文献求助10
12秒前
wanci应助小斌采纳,获得10
14秒前
无花果应助ZH的天方夜谭采纳,获得10
14秒前
YueYue完成签到,获得积分10
15秒前
Akim应助龚贤亮采纳,获得10
16秒前
16秒前
赖赖发布了新的文献求助10
21秒前
23秒前
万能图书馆应助mujinxin采纳,获得10
24秒前
从容芮应助爱吃卷饼采纳,获得50
25秒前
25秒前
李健应助蜂鸟5156采纳,获得10
26秒前
27秒前
yjj完成签到,获得积分10
27秒前
元问晴完成签到,获得积分10
28秒前
lingzhiyi完成签到,获得积分10
29秒前
31秒前
31秒前
可个可可发布了新的文献求助10
31秒前
科研通AI6应助十年饮冰采纳,获得10
32秒前
33秒前
zimo发布了新的文献求助10
34秒前
小巧的不评完成签到 ,获得积分10
35秒前
勤恳平卉完成签到,获得积分10
35秒前
今后应助董若兰采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957586
求助须知:如何正确求助?哪些是违规求助? 4218964
关于积分的说明 13132165
捐赠科研通 4001830
什么是DOI,文献DOI怎么找? 2190033
邀请新用户注册赠送积分活动 1204936
关于科研通互助平台的介绍 1116538