GeSANet: Geospatial-Awareness Network for VHR Remote Sensing Image Change Detection

地理空间分析 高光谱成像 计算机科学 变更检测 遥感 特征提取 图像分辨率 人工智能 特征(语言学) 数据挖掘 模式识别(心理学) 计算机视觉 地理 语言学 哲学
作者
Xiaoyang Zhao,Keyun Zhao,Siyao Li,Xianghai Wang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:9
标识
DOI:10.1109/tgrs.2023.3272550
摘要

The characteristics of very high resolution (VHR) remote sensing images (RSIs) have higher spatial resolution inherently, and are easier to obtain globally compared with hyperspectral images (HSIs), making it possible to detect small-scale land cover changes in multiple applications. RSI change detection (RSI-CD) based on deep learning has been paid attention to and become a frontier research field in recent years, and is currently facing two challenging problems: The first is high dependence on registration between bi-temporal images caused by high spatial resolution; The other is high pseudo-change information response caused by low spectral resolution. In order to address the above-mentioned two problems, a novel RSI-CD framework called Geospatial-Awareness Network (GeSANet) based on the geospatial Position Matching Mechanism (PMM) with multi-level adjustment and the geo-spatial Content Reasoning Mechanism (CRM) with diverse pseudo-change information filtering is proposed. First of all, the PMM assigns independent two-dimensional offset coordinates to each position in the previous temporal image, afterwards, bilinear interpolation is employed to obtain the subpixel feature value after the offset, and the sparse results based on the difference are transmitted to the next level prediction to realize multi-level geospatial correction. The CRM extracts global features from the corrected sparse feature map in terms of dimensions, implementing effective discriminant feature extraction on basis of the original feature map in a stepwise refinement manner through the cross-dimension exchange mechanism, to filter out various pseudo-change information as well as maintain real change information. Comparison experiments with five recent SOTA methods are carried out on two popular datasets with diverse changes, the results show that the proposed method has good robustness and validity for multi-temporal RSI-CD. In particular, it has a strong comparative advantage in detecting small entity changes and edge details. The source code of the proposed framework can be downloaded from https://github.com/zxylnnu/GeSANet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵雪莲完成签到,获得积分10
刚刚
ChenYX发布了新的文献求助10
刚刚
林洛沁发布了新的文献求助10
刚刚
Santasy完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
spc68应助47采纳,获得10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
5秒前
5秒前
5秒前
7秒前
云望完成签到,获得积分10
7秒前
8秒前
诺诺朱发布了新的文献求助10
8秒前
超级老三发布了新的文献求助10
9秒前
meng发布了新的文献求助10
9秒前
10秒前
慕青应助林洛沁采纳,获得10
10秒前
11秒前
11秒前
YXZ发布了新的文献求助30
11秒前
小蘑菇应助1816013153采纳,获得10
12秒前
fancyiii发布了新的文献求助10
13秒前
酷雅的小跟班完成签到,获得积分20
14秒前
ChenChen发布了新的文献求助10
14秒前
fan发布了新的文献求助10
14秒前
皛白完成签到,获得积分20
14秒前
kdjm688发布了新的文献求助10
14秒前
大模型应助落寞的无施采纳,获得10
15秒前
汉堡包应助吴彦祖采纳,获得10
15秒前
华仔应助哆来米采纳,获得10
16秒前
16秒前
17秒前
科研通AI6应助米粒采纳,获得10
17秒前
研友_VZG7GZ应助皛白采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577756
求助须知:如何正确求助?哪些是违规求助? 4662789
关于积分的说明 14743583
捐赠科研通 4603478
什么是DOI,文献DOI怎么找? 2526478
邀请新用户注册赠送积分活动 1496172
关于科研通互助平台的介绍 1465573