Concordance-Based Batch Effect Correction for Large-Scale Metabolomics

代谢组 化学 代谢组学 样品(材料) 比例(比率) 一致性 统计 批处理 样本量测定 生物系统 数据挖掘 色谱法 计算机科学 生物信息学 数学 物理 生物 量子力学 程序设计语言
作者
Fanjing Guo,Genjin Lin,Liheng Dong,Kian-Kai Cheng,Lingli Deng,Xiangnan Xu,Daniel Raftery,Jiyang Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (18): 7220-7228 被引量:3
标识
DOI:10.1021/acs.analchem.2c05748
摘要

For a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
在水一方应助Du采纳,获得10
1秒前
Xdhcg发布了新的文献求助20
2秒前
愿好应助xukaixuan001采纳,获得10
2秒前
3秒前
3秒前
甜美白云完成签到,获得积分20
3秒前
科研通AI2S应助yueyue采纳,获得20
4秒前
JamesPei应助xieyin717采纳,获得10
4秒前
浮游应助自由蓉采纳,获得10
4秒前
啊啊啊完成签到,获得积分10
5秒前
yyf发布了新的文献求助10
5秒前
赘婿应助zhanzhanzhan采纳,获得10
5秒前
5秒前
5秒前
xiuxue424发布了新的文献求助10
6秒前
Owen应助舒心的芝麻采纳,获得10
6秒前
猛小马发布了新的文献求助10
7秒前
写得出发的中完成签到,获得积分10
7秒前
lcm完成签到,获得积分10
7秒前
浮游应助青田101采纳,获得10
8秒前
多宝完成签到,获得积分10
8秒前
英俊的铭应助美好的千凝采纳,获得10
8秒前
大模型应助甲乙丙丁采纳,获得10
8秒前
缥缈灵煌发布了新的文献求助10
8秒前
活力的亦云完成签到,获得积分10
8秒前
春天在这李完成签到,获得积分10
8秒前
酷波er应助yichuan_wangjie采纳,获得10
8秒前
djbj2022发布了新的文献求助10
9秒前
9秒前
冷静的伊完成签到,获得积分10
9秒前
麻坛宗师完成签到 ,获得积分10
9秒前
123456789完成签到,获得积分10
9秒前
liuxingyu发布了新的文献求助10
9秒前
顾矜应助周shang采纳,获得10
10秒前
苏莉婷发布了新的文献求助10
11秒前
佛系发布了新的文献求助10
11秒前
coldspringhao发布了新的文献求助10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728