Concordance-Based Batch Effect Correction for Large-Scale Metabolomics

代谢组 化学 代谢组学 样品(材料) 比例(比率) 一致性 统计 批处理 样本量测定 生物系统 数据挖掘 色谱法 计算机科学 生物信息学 数学 物理 生物 量子力学 程序设计语言
作者
Fanjing Guo,Genjin Lin,Liheng Dong,Kian-Kai Cheng,Lingli Deng,Xiangnan Xu,Daniel Raftery,Jiyang Dong
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (18): 7220-7228 被引量:1
标识
DOI:10.1021/acs.analchem.2c05748
摘要

For a large-scale metabolomics study, sample collection, preparation, and analysis may last several days, months, or even (intermittently) over years. This may lead to apparent batch effects in the acquired metabolomics data due to variability in instrument status, environmental conditions, or experimental operators. Batch effects may confound the true biological relationships among metabolites and thus obscure real metabolic changes. At present, most of the commonly used batch effect correction (BEC) methods are based on quality control (QC) samples, which require sufficient and stable QC samples. However, the quality of the QC samples may deteriorate if the experiment lasts for a long time. Alternatively, isotope-labeled internal standards have been used, but they generally do not provide good coverage of the metabolome. On the other hand, BEC can also be conducted through a data-driven method, in which no QC sample is needed. Here, we propose a novel data-driven BEC method, namely, CordBat, to achieve concordance between each batch of samples. In the proposed CordBat method, a reference batch is first selected from all batches of data, and the remaining batches are referred to as "other batches." The reference batch serves as the baseline for the batch adjustment by providing a coordinate of correlation between metabolites. Next, a Gaussian graphical model is built on the combined dataset of reference and other batches, and finally, BEC is achieved by optimizing the correction coefficients in the other batches so that the correlation between metabolites of each batch and their combinations are in concordance with that of the reference batch. Three real-world metabolomics datasets are used to evaluate the performance of CordBat by comparing it with five commonly used BEC methods. The present experimental results showed the effectiveness of CordBat in batch effect removal and the concordance of correlation between metabolites after BEC. CordBat was found to be comparable to the QC-based methods and achieved better performance in the preservation of biological effects. The proposed CordBat method may serve as an alternative BEC method for large-scale metabolomics that lack proper QC samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助乐观的幼珊采纳,获得10
刚刚
刚刚
刚刚
刚刚
顺顺完成签到,获得积分10
2秒前
2秒前
小马甲应助a1oft采纳,获得10
2秒前
Keke完成签到,获得积分10
2秒前
3秒前
自然秋柳发布了新的文献求助10
3秒前
candy6663339完成签到,获得积分10
3秒前
weiwei完成签到,获得积分10
3秒前
大个应助苗条的山晴采纳,获得10
4秒前
努力发一区完成签到 ,获得积分0
4秒前
蒋时晏应助恶恶么v采纳,获得30
4秒前
5秒前
5秒前
gennp完成签到,获得积分10
5秒前
gg完成签到,获得积分10
5秒前
1111发布了新的文献求助10
5秒前
情怀应助wjh采纳,获得10
6秒前
6秒前
Hey关闭了Hey文献求助
6秒前
学渣向下完成签到,获得积分10
6秒前
咚咚咚发布了新的文献求助10
6秒前
7秒前
willen完成签到,获得积分10
7秒前
7秒前
奇怪的柒完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
文静的枫叶完成签到,获得积分10
9秒前
科目三应助神麒小雪采纳,获得10
9秒前
zzznznnn发布了新的文献求助10
10秒前
pbf发布了新的文献求助20
10秒前
科研通AI5应助有风采纳,获得10
11秒前
Lin完成签到,获得积分10
11秒前
科研通AI5应助肉松小贝采纳,获得10
12秒前
粉色完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759