成核
结晶
纳米晶
材料科学
化学工程
小角X射线散射
无定形固体
锆
纳米颗粒
动态光散射
分散性
结晶学
纳米技术
散射
化学
有机化学
高分子化学
冶金
工程类
物理
光学
作者
Rohan Pokratath,Laurent Lermusiaux,Stefano Checchia,Jikson Pulparayil Mathew,Susan Cooper,Jette K. Mathiesen,Guillaume Landaburu,Soham Banerjee,Songsheng Tao,Nico Reichholf,Simon J. L. Billinge,Benjamin Abécassis,Kirsten M. Ø. Jensen,Jonathan De Roo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-04-24
卷期号:17 (9): 8796-8806
被引量:11
标识
DOI:10.1021/acsnano.3c02149
摘要
One can nowadays readily generate monodisperse colloidal nanocrystals, but the underlying mechanism of nucleation and growth is still a matter of intense debate. Here, we combine X-ray pair distribution function (PDF) analysis, small-angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR), and transmission electron microscopy (TEM) to investigate the nucleation and growth of zirconia nanocrystals from zirconium chloride and zirconium isopropoxide at 340 °C, in the presence of surfactant (tri-n-octylphosphine oxide). Through E1 elimination, precursor conversion leads to the formation of small amorphous particles (less than 2 nm in diameter). Over the course of the reaction, the total particle concentration decreases while the concentration of nanocrystals stays constant after a sudden increase (nucleation). Kinetic modeling suggests that amorphous particles nucleate into nanocrystals through a second order process and they are also the source of nanocrystal growth. There is no evidence for a soluble monomer. The nonclassical nucleation is related to a precursor decomposition rate that is an order of magnitude higher than the observed crystallization rate. Using different zirconium precursors (e.g., ZrBr4 or Zr(OtBu)4), we can tune the precursor decomposition rate and thus control the nanocrystal size. We expect these findings to help researchers in the further development of colloidal syntheses.
科研通智能强力驱动
Strongly Powered by AbleSci AI