Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助七寻笑采纳,获得10
刚刚
SaSa发布了新的文献求助10
刚刚
ly发布了新的文献求助10
1秒前
1秒前
1秒前
miu完成签到,获得积分10
2秒前
星辰大海应助岳元满采纳,获得10
2秒前
李爱国应助Georges-09采纳,获得10
3秒前
3秒前
6秒前
领导范儿应助MoonByMoon采纳,获得10
6秒前
zcxxxxxxx完成签到,获得积分10
6秒前
728发布了新的文献求助10
6秒前
7秒前
7秒前
阎梦凡完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
Sense发布了新的文献求助10
8秒前
浮游应助light采纳,获得10
8秒前
浮游应助老实的愫采纳,获得10
9秒前
9秒前
胖豆完成签到,获得积分10
9秒前
10秒前
11秒前
zhenglingying完成签到 ,获得积分10
12秒前
蓝天发布了新的文献求助10
12秒前
赘婿应助kimoki采纳,获得10
12秒前
诚心盼海发布了新的文献求助10
12秒前
危机的雪旋完成签到,获得积分10
13秒前
13秒前
脑洞疼应助威武白桃采纳,获得10
13秒前
SciGPT应助中中采纳,获得10
14秒前
14秒前
Hevesy完成签到,获得积分10
15秒前
我是老大应助社团活动采纳,获得10
15秒前
一颗咸蛋黄完成签到 ,获得积分10
15秒前
15秒前
慕青应助gravity采纳,获得10
16秒前
杨小冬发布了新的文献求助10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642218
求助须知:如何正确求助?哪些是违规求助? 4758455
关于积分的说明 15016860
捐赠科研通 4800783
什么是DOI,文献DOI怎么找? 2566211
邀请新用户注册赠送积分活动 1524307
关于科研通互助平台的介绍 1483909