亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
袁梦发布了新的文献求助10
5秒前
科研通AI6应助袁梦采纳,获得10
21秒前
上官若男应助马良采纳,获得10
37秒前
贰鸟完成签到,获得积分0
37秒前
47秒前
科研通AI5应助jitianxing采纳,获得10
48秒前
马良发布了新的文献求助10
50秒前
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
jitianxing发布了新的文献求助10
1分钟前
jitianxing完成签到,获得积分20
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI5应助jitianxing采纳,获得10
1分钟前
沉默白桃完成签到 ,获得积分10
2分钟前
感动清炎完成签到,获得积分10
2分钟前
Ava应助oleskarabach采纳,获得10
3分钟前
4分钟前
领导范儿应助gszy1975采纳,获得10
5分钟前
靓丽的熠彤完成签到,获得积分10
5分钟前
6分钟前
四氧化三铁完成签到,获得积分10
6分钟前
6分钟前
云云发布了新的文献求助10
6分钟前
wuju完成签到,获得积分10
6分钟前
Raunio完成签到,获得积分10
7分钟前
共享精神应助科研通管家采纳,获得10
7分钟前
Tales完成签到 ,获得积分10
8分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
武雨珍完成签到,获得积分10
8分钟前
9分钟前
gszy1975发布了新的文献求助10
9分钟前
Jasper应助科研通管家采纳,获得10
9分钟前
FashionBoy应助thchiang采纳,获得10
9分钟前
852应助陈杰采纳,获得10
10分钟前
科研通AI5应助马良采纳,获得10
11分钟前
小米的稻田完成签到 ,获得积分10
11分钟前
11分钟前
马良发布了新的文献求助10
11分钟前
Jasper应助专注的子骞采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014