Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sugar完成签到,获得积分10
刚刚
lily完成签到,获得积分10
刚刚
自由寄柔完成签到,获得积分10
刚刚
1秒前
Zx_1993应助miao采纳,获得20
1秒前
欧阳蛋蛋鸡完成签到,获得积分10
1秒前
ZJPPPP发布了新的文献求助10
1秒前
cij123完成签到,获得积分10
1秒前
独特的忆彤完成签到 ,获得积分10
2秒前
mc关闭了mc文献求助
2秒前
leisure应助科研通管家采纳,获得10
2秒前
VDC应助科研通管家采纳,获得30
2秒前
liuaoo发布了新的文献求助10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得10
3秒前
求助人员应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
自由寄柔发布了新的文献求助30
3秒前
wills应助科研通管家采纳,获得10
3秒前
Lucas应助科研通管家采纳,获得10
3秒前
Jasper应助蕾蕾大酱采纳,获得10
4秒前
李健的粉丝团团长应助周_采纳,获得10
4秒前
独特听芹完成签到,获得积分10
4秒前
Tan完成签到 ,获得积分10
4秒前
5秒前
6秒前
123发布了新的文献求助10
6秒前
华青ww完成签到,获得积分10
6秒前
王晓朋完成签到,获得积分10
6秒前
agd122完成签到,获得积分10
7秒前
7秒前
喝到几点完成签到,获得积分10
7秒前
英姑应助dd采纳,获得10
7秒前
邹万恶完成签到,获得积分10
7秒前
善学以致用应助苏silence采纳,获得10
7秒前
简单半邪完成签到,获得积分10
7秒前
库凯伊完成签到,获得积分10
8秒前
9秒前
piggybunny发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573946
求助须知:如何正确求助?哪些是违规求助? 4660289
关于积分的说明 14728668
捐赠科研通 4600067
什么是DOI,文献DOI怎么找? 2524676
邀请新用户注册赠送积分活动 1495011
关于科研通互助平台的介绍 1465006