已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
临子完成签到,获得积分10
刚刚
qiao发布了新的文献求助10
2秒前
HalloYa完成签到 ,获得积分10
3秒前
2568269431完成签到 ,获得积分10
10秒前
huenguyenvan完成签到,获得积分10
12秒前
16秒前
优秀的dd完成签到 ,获得积分10
24秒前
26秒前
对方正在看文献完成签到,获得积分10
26秒前
汽水完成签到 ,获得积分10
27秒前
清脆的飞丹完成签到,获得积分10
27秒前
陈末应助杨震采纳,获得30
27秒前
Imstemcell完成签到,获得积分10
31秒前
一粟完成签到 ,获得积分10
31秒前
嘟嘟雯完成签到 ,获得积分10
37秒前
菜鸟完成签到,获得积分10
41秒前
46秒前
搞怪的谷蕊完成签到 ,获得积分10
46秒前
失眠的镜子关注了科研通微信公众号
47秒前
大个应助猴子好坏采纳,获得10
48秒前
阿兹卡班完成签到 ,获得积分10
50秒前
55秒前
56秒前
asd1576562308完成签到 ,获得积分10
1分钟前
刻苦小鸭子完成签到,获得积分10
1分钟前
1分钟前
胡图图啦啦完成签到 ,获得积分10
1分钟前
浮游应助wyt采纳,获得10
1分钟前
1分钟前
1分钟前
猴子好坏发布了新的文献求助10
1分钟前
lili完成签到 ,获得积分10
1分钟前
情怀应助CHANYEOL采纳,获得10
1分钟前
英俊的铭应助科研通管家采纳,获得20
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
1分钟前
mxq完成签到,获得积分10
1分钟前
mm完成签到 ,获得积分10
1分钟前
ccc完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454727
求助须知:如何正确求助?哪些是违规求助? 4562095
关于积分的说明 14284670
捐赠科研通 4485931
什么是DOI,文献DOI怎么找? 2457157
邀请新用户注册赠送积分活动 1447737
关于科研通互助平台的介绍 1422961