Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
多一完成签到,获得积分10
4秒前
4秒前
ao完成签到,获得积分10
4秒前
曹冬子程完成签到,获得积分20
5秒前
8秒前
xili完成签到,获得积分10
8秒前
Orange应助xvan采纳,获得10
8秒前
无情的宛菡完成签到 ,获得积分10
8秒前
多一发布了新的文献求助10
9秒前
lina发布了新的文献求助10
9秒前
10秒前
11秒前
13秒前
安青兰发布了新的文献求助10
14秒前
tjzbw完成签到,获得积分10
14秒前
xzy998发布了新的文献求助10
17秒前
周一凡发布了新的文献求助10
18秒前
19秒前
嘉悦发布了新的文献求助10
20秒前
李健的小迷弟应助ccc采纳,获得10
21秒前
小雨点Logan应助lina采纳,获得10
21秒前
小王爱学习完成签到 ,获得积分10
22秒前
殷勤的紫槐应助范炎炎采纳,获得200
22秒前
啊哈哈哈完成签到 ,获得积分10
23秒前
23秒前
24秒前
25秒前
大可完成签到 ,获得积分10
25秒前
bkagyin应助刻苦小鸭子采纳,获得10
26秒前
烟花应助无题采纳,获得10
26秒前
26秒前
科研通AI6应助xxx采纳,获得30
27秒前
S先生完成签到,获得积分10
29秒前
29秒前
李昕123发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
30秒前
小蘑菇应助英勇羿采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431792
求助须知:如何正确求助?哪些是违规求助? 4544653
关于积分的说明 14193386
捐赠科研通 4463776
什么是DOI,文献DOI怎么找? 2446873
邀请新用户注册赠送积分活动 1438218
关于科研通互助平台的介绍 1414921