Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Pengfei Yu,Litao Yang,Ling Huang,Jiancheng Sun,Shangqi Chen,Chengwei Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:Publish Ahead of Print 被引量:18
标识
DOI:10.1097/js9.0000000000000432
摘要

Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify radio-clinical signatures from pretreatment oversampled computed tomography (CT) images to predict the response to NCT and prognosis of LAGC patients.LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e. DeepSMOTE). Then, the deep learning (DL) signature and clinic-based features were fed into the deep learning radio-clinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration, and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics.A total of 1060 LAGC patients were recruited from six hospitals; the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from five other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC [area under the curve (AUC), 0.86] and EVC (AUC, 0.82), with good calibration in all cohorts ( P >0.05). Moreover, the DLCS model outperformed the clinical model ( P <0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis [hazard ratio (HR), 0.828, P =0.004]. The concordance index (C-index), integrated area under the time-dependent ROC curve (iAUC), and integrated Brier score (IBS) for the OS model were 0.64, 1.24, and 0.71 in the test set.The authors proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients prior to NCT, which can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木雨亦潇潇完成签到,获得积分10
1秒前
甜甜友容完成签到,获得积分10
2秒前
这一天完成签到,获得积分10
3秒前
boxi完成签到 ,获得积分10
4秒前
mp5完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
大侠完成签到 ,获得积分10
6秒前
迈克老狼完成签到 ,获得积分10
9秒前
lifeng完成签到 ,获得积分10
9秒前
闻屿完成签到,获得积分10
10秒前
11秒前
小黑猫跑酷完成签到 ,获得积分10
11秒前
16秒前
Heng发布了新的文献求助10
17秒前
火星上小土豆完成签到 ,获得积分10
18秒前
111完成签到 ,获得积分10
18秒前
CNAxiaozhu7完成签到,获得积分0
20秒前
plants发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助150
21秒前
xinxiangshicheng完成签到 ,获得积分10
27秒前
科目三应助Heng采纳,获得10
27秒前
Y.J发布了新的文献求助10
28秒前
30秒前
量子星尘发布了新的文献求助150
31秒前
务实青筠完成签到 ,获得积分10
33秒前
搬砖的化学男完成签到 ,获得积分0
33秒前
jixuchance完成签到,获得积分10
35秒前
ACMI发布了新的文献求助10
35秒前
zxy应助唐泽雪穗采纳,获得20
36秒前
hunzizzzzz完成签到,获得积分10
36秒前
鲁滨逊完成签到 ,获得积分10
37秒前
cgliuhx完成签到,获得积分10
38秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
赘婿应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
FashionBoy应助科研通管家采纳,获得10
39秒前
39秒前
清秀龙猫完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333