Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Ping Yu,Litao Yang,Ling Huang,Juan Sun,Shangqi Chen,Connie R. Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang,Yiming Li,Yian Du,Zhiyuan Xu,Xin‐Bing Cheng
出处
期刊:International Journal of Surgery [Wolters Kluwer]
卷期号:Publish Ahead of Print 被引量:4
标识
DOI:10.1097/js9.0000000000000432
摘要

Background: Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify a radioclinical signatures from pretreatment oversampled CT images to predict the response to NCT and prognosis of LAGC patients. Methods: LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e., DeepSMOTE). Then, the Deep learning (DL) signature and clinic-based features were fed into the deep learning radioclinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics. Result: A total of 1060 LAGC patients were recruited from six hospitals, the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from 5 other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC (AUC, 0.86) and EVC (AUC, 0.82), with good calibration in all cohorts (P>0.05). Moreover, the DLCS model outperformed the clinical model (P<0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis (HR, 0.828, P=0.004). The C-index, iAUC, and IBS for the OS model were 0.64, 1.24 and 0.71 in the test set. Conclusion: We proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients priors to NCT that can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助无情的匪采纳,获得10
1秒前
2秒前
刘寄奴发布了新的文献求助10
3秒前
su发布了新的文献求助10
5秒前
深情安青应助胡航航采纳,获得10
6秒前
小小发布了新的文献求助30
7秒前
CodeCraft应助苗条梦玉采纳,获得10
8秒前
jia完成签到 ,获得积分10
9秒前
12秒前
12秒前
13秒前
Ava应助坚定路人采纳,获得10
15秒前
17秒前
18秒前
潘善若发布了新的文献求助10
18秒前
戴岱发布了新的文献求助10
20秒前
21秒前
22秒前
momo发布了新的文献求助10
24秒前
大模型应助潘善若采纳,获得10
24秒前
25秒前
jolt发布了新的文献求助10
26秒前
27秒前
传奇3应助戴岱采纳,获得10
28秒前
nini完成签到,获得积分10
30秒前
zzzjh发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
33秒前
34秒前
nini发布了新的文献求助10
37秒前
Lucas应助XAN采纳,获得10
38秒前
潘善若发布了新的文献求助10
38秒前
棠棠完成签到 ,获得积分10
38秒前
41秒前
yyer完成签到,获得积分10
41秒前
43秒前
FashionBoy应助潘善若采纳,获得10
44秒前
慕青应助忐忑的阑香采纳,获得10
44秒前
momo发布了新的文献求助10
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158