Deep learning radio-clinical signature for predicting neoadjuvant chemotherapy response and prognosis from pretreatment CT images of locally advanced gastric cancer patients

医学 队列 化疗 内科学 癌症 肿瘤科 放射科
作者
Can Hu,Wujie Chen,Feng Li,Yanqiang Zhang,Ping Yu,Litao Yang,Ling Huang,Juan Sun,Shangqi Chen,Connie R. Shi,Yuanshui Sun,Zaisheng Ye,Yuan Li,Jiahui Chen,Wei Qin,Jingli Xu,Handong Xu,Yahan Tong,Zhehan Bao,Chencui Huang,Yiming Li,Yian Du,Zhiyuan Xu,Xin‐Bing Cheng
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:Publish Ahead of Print 被引量:4
标识
DOI:10.1097/js9.0000000000000432
摘要

Background: Early noninvasive screening of patients who would benefit from neoadjuvant chemotherapy (NCT) is essential for personalized treatment of locally advanced gastric cancer (LAGC). The aim of this study was to identify a radioclinical signatures from pretreatment oversampled CT images to predict the response to NCT and prognosis of LAGC patients. Methods: LAGC patients were retrospectively recruited from six hospitals from January 2008 to December 2021. An SE-ResNet50-based chemotherapy response prediction system was developed from pretreatment CT images preprocessed with an imaging oversampling method (i.e., DeepSMOTE). Then, the Deep learning (DL) signature and clinic-based features were fed into the deep learning radioclinical signature (DLCS). The predictive performance of the model was evaluated based on discrimination, calibration and clinical usefulness. An additional model was built to predict overall survival (OS) and explore the survival benefit of the proposed DL signature and clinicopathological characteristics. Result: A total of 1060 LAGC patients were recruited from six hospitals, the training cohort (TC) and internal validation cohort (IVC) patients were randomly selected from center I. An external validation cohort (EVC) of 265 patients from 5 other centers was also included. The DLCS exhibited excellent performance in predicting the response to NCT in the IVC (AUC, 0.86) and EVC (AUC, 0.82), with good calibration in all cohorts (P>0.05). Moreover, the DLCS model outperformed the clinical model (P<0.05). Additionally, we found that the DL signature could serve as an independent factor for prognosis (HR, 0.828, P=0.004). The C-index, iAUC, and IBS for the OS model were 0.64, 1.24 and 0.71 in the test set. Conclusion: We proposed a DLCS model that combined imaging features with clinical risk factors to accurately predict tumor response and identify the risk of OS in LAGC patients priors to NCT that can then be used to guide personalized treatment plans with the help of computerized tumor-level characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hairmon完成签到 ,获得积分10
刚刚
lvjia完成签到,获得积分10
刚刚
zxp完成签到,获得积分10
刚刚
萨尔莫斯发布了新的文献求助10
1秒前
bkagyin应助ytolll采纳,获得10
1秒前
rita完成签到,获得积分10
1秒前
曜晟驳回了烟花应助
1秒前
1秒前
2秒前
huan完成签到,获得积分10
3秒前
海虎爆破拳完成签到,获得积分10
3秒前
neilphilosci完成签到 ,获得积分10
3秒前
3秒前
风趣小小完成签到,获得积分10
3秒前
wanci应助枍枫采纳,获得10
4秒前
seven完成签到,获得积分10
4秒前
5秒前
伶俜完成签到,获得积分10
6秒前
6秒前
6秒前
请勿继续完成签到,获得积分10
7秒前
7秒前
细心寒凡完成签到 ,获得积分10
7秒前
ZH完成签到,获得积分10
8秒前
8秒前
tkdzjr12345发布了新的文献求助10
10秒前
11秒前
无为完成签到 ,获得积分10
11秒前
哈哈哈完成签到,获得积分10
11秒前
wybdsj发布了新的文献求助10
13秒前
Sherwin完成签到,获得积分10
13秒前
顾矜应助萨尔莫斯采纳,获得10
13秒前
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
甲乙丙丁发布了新的文献求助10
14秒前
14秒前
岁月浪翻了完成签到,获得积分10
14秒前
小刷子完成签到 ,获得积分10
14秒前
tianshicanyi发布了新的文献求助10
16秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121810
求助须知:如何正确求助?哪些是违规求助? 2772185
关于积分的说明 7711736
捐赠科研通 2427602
什么是DOI,文献DOI怎么找? 1289422
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169