Grain refinement and columnar-to-equiaxed transition of Ti6Al4V during additive manufacturing via different laser oscillations

等轴晶 振荡(细胞信号) 材料科学 钛合金 温度梯度 成核 沉积(地质) 激光器 极限抗拉强度 各向异性 冶金 粒度 选择性激光熔化 复合材料 光学 物理 微观结构 地质学 合金 热力学 古生物学 遗传学 量子力学 沉积物 生物
作者
Guoqing Dai,Zhonggang Sun,Yusheng Li,Jayant Jain,Ayan Bhowmik,Junji Shinjo,Jinzhong Lu,Chinnapat Panwisawas
出处
期刊:International Journal of Machine Tools & Manufacture [Elsevier]
卷期号:189: 104031-104031 被引量:29
标识
DOI:10.1016/j.ijmachtools.2023.104031
摘要

Conventional additive manufacturing produces coarse columnar grains, which affect the mechanical properties of additively manufactured titanium alloys. This study developed a novel integrated additive manufacturing technology termed oscillation laser melting deposition, including linear, circular, 8-shape, and infinite, was developed to modify the microstructure and improve the mechanical properties of Ti6Al4V. The results showed that significant grain refinement and columnar-to-equiaxed transition (CET) can be induced by laser oscillation. The prior β grain size of the sample with infinite laser oscillation decreased by 54.24% in the single-track zone and by 42.55% in the overlap remelting zone. The ultimate tensile strength of the sample with infinite laser oscillation increased by 16.95% and 32.37% in the parallel and vertical directions, and the elongation also increased by 83.60% and 13.77%, respectively. The anisotropy of (10-10) and (11-22) was also significantly eliminated. The temperature variation and thermal field evolution were also investigated, and the complex oscillation changed the fluid flow velocity orientation, reduced the temperature gradient, and promoted the nucleation of equiaxed grains. In addition, the strengthening mechanisms of the different laser oscillations were revealed. Therefore, the oscillation laser melting deposition technology can become a new approach for overcoming the key bottlenecks of additive manufacturing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彩色小凡发布了新的文献求助10
刚刚
wanci应助Rita采纳,获得30
刚刚
无花果应助成就猫咪采纳,获得10
2秒前
2秒前
3秒前
卷卷516发布了新的文献求助10
3秒前
coco发布了新的文献求助10
4秒前
4秒前
海的呼唤完成签到,获得积分10
4秒前
5秒前
平常的伊发布了新的文献求助10
5秒前
bing应助像猫的狗采纳,获得10
5秒前
领导范儿应助像猫的狗采纳,获得10
5秒前
万能图书馆应助像猫的狗采纳,获得10
5秒前
汉堡包应助像猫的狗采纳,获得10
5秒前
英姑应助像猫的狗采纳,获得10
6秒前
NexusExplorer应助像猫的狗采纳,获得10
6秒前
斯文败类应助像猫的狗采纳,获得10
6秒前
科研通AI2S应助像猫的狗采纳,获得10
6秒前
上官若男应助像猫的狗采纳,获得10
6秒前
7秒前
凛凛发布了新的文献求助10
7秒前
十一发布了新的文献求助10
8秒前
yanwu完成签到,获得积分10
8秒前
贰萌发布了新的文献求助30
8秒前
支雨泽完成签到,获得积分10
9秒前
无花果应助大力沛萍采纳,获得10
10秒前
11秒前
田様应助coco采纳,获得10
11秒前
Lucas应助rachel8l采纳,获得10
12秒前
14秒前
帅气如波完成签到 ,获得积分10
14秒前
潇洒十三发布了新的文献求助10
14秒前
李爱国应助科研通管家采纳,获得10
15秒前
思源应助科研通管家采纳,获得10
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
司徒文青应助科研通管家采纳,获得30
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3458644
求助须知:如何正确求助?哪些是违规求助? 3053442
关于积分的说明 9036584
捐赠科研通 2742678
什么是DOI,文献DOI怎么找? 1504484
科研通“疑难数据库(出版商)”最低求助积分说明 695312
邀请新用户注册赠送积分活动 694494