Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭郭完成签到 ,获得积分10
刚刚
1秒前
想要用不完的积分完成签到,获得积分10
1秒前
ayu完成签到,获得积分10
1秒前
大大完成签到,获得积分10
1秒前
qtr完成签到 ,获得积分20
2秒前
2秒前
2秒前
FashionBoy应助上杉绘梨衣采纳,获得10
2秒前
姜小姜发布了新的文献求助10
3秒前
zht完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
风清扬应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
3秒前
guoweismmu发布了新的文献求助10
3秒前
3秒前
3秒前
小圆完成签到,获得积分10
3秒前
Jasper应助Rylee采纳,获得10
4秒前
CodeCraft应助無期采纳,获得10
4秒前
4秒前
4秒前
看看看完成签到,获得积分10
5秒前
ding应助争取发二区采纳,获得10
5秒前
5秒前
rr完成签到,获得积分10
6秒前
科研通AI6应助阳阳采纳,获得10
6秒前
seven发布了新的文献求助10
6秒前
z.完成签到,获得积分10
6秒前
明天好完成签到,获得积分10
6秒前
6秒前
猫猫睡觉觉完成签到,获得积分10
6秒前
6秒前
Denz完成签到,获得积分10
7秒前
超级的抽屉完成签到,获得积分10
7秒前
狂野以松完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510498
求助须知:如何正确求助?哪些是违规求助? 4605134
关于积分的说明 14492967
捐赠科研通 4540342
什么是DOI,文献DOI怎么找? 2487940
邀请新用户注册赠送积分活动 1470152
关于科研通互助平台的介绍 1442632