Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
charming完成签到 ,获得积分10
1秒前
叮当发布了新的文献求助10
1秒前
Crane发布了新的文献求助10
2秒前
齐乾宁完成签到,获得积分10
2秒前
2秒前
风筝鱼完成签到 ,获得积分10
2秒前
科研通AI5应助虚心的访烟采纳,获得30
2秒前
wanci应助Sandstorm采纳,获得10
2秒前
3秒前
李健应助菜菜采纳,获得10
4秒前
葛立峰发布了新的文献求助10
5秒前
freshabc完成签到,获得积分10
5秒前
99668完成签到,获得积分10
5秒前
852应助乐观的海采纳,获得10
5秒前
科研通AI6应助Deyong采纳,获得10
5秒前
Jun完成签到 ,获得积分10
5秒前
7秒前
Crane完成签到,获得积分10
7秒前
yoona发布了新的文献求助10
8秒前
彭于晏应助科研通管家采纳,获得10
9秒前
Rita应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
Dean应助科研通管家采纳,获得50
10秒前
华仔应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得20
10秒前
风清扬应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908652
求助须知:如何正确求助?哪些是违规求助? 4185172
关于积分的说明 12997027
捐赠科研通 3951974
什么是DOI,文献DOI怎么找? 2167233
邀请新用户注册赠送积分活动 1185712
关于科研通互助平台的介绍 1092321