亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大力的康乃馨完成签到,获得积分10
1秒前
4秒前
luxiang发布了新的文献求助10
4秒前
5秒前
6秒前
爆米花应助yo采纳,获得10
7秒前
俏皮的雁发布了新的文献求助10
9秒前
斯文败类应助海洋球采纳,获得10
10秒前
bo发布了新的文献求助10
10秒前
香蕉觅云应助露营采纳,获得10
19秒前
20秒前
corleeang完成签到 ,获得积分10
20秒前
海洋球发布了新的文献求助10
25秒前
29秒前
31秒前
32秒前
34秒前
35秒前
浮游应助海洋球采纳,获得10
37秒前
44秒前
Takahara2000完成签到,获得积分10
48秒前
不说再见发布了新的文献求助10
49秒前
俏皮的雁完成签到,获得积分10
54秒前
bkagyin应助oikage采纳,获得10
55秒前
灯露发布了新的文献求助10
55秒前
龙龙完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
佳子发布了新的文献求助10
1分钟前
露营发布了新的文献求助10
1分钟前
CipherSage应助佳子采纳,获得10
1分钟前
灯露完成签到,获得积分10
1分钟前
1分钟前
汉堡包应助露营采纳,获得10
1分钟前
1分钟前
1分钟前
李秀兰发布了新的文献求助10
1分钟前
1分钟前
yo发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5426299
求助须知:如何正确求助?哪些是违规求助? 4540126
关于积分的说明 14171681
捐赠科研通 4457871
什么是DOI,文献DOI怎么找? 2444698
邀请新用户注册赠送积分活动 1435666
关于科研通互助平台的介绍 1413164