Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cccc完成签到,获得积分10
刚刚
刚刚
刚刚
wzq发布了新的文献求助10
1秒前
1秒前
冷静的飞槐完成签到,获得积分20
1秒前
称心的仙人掌完成签到 ,获得积分10
2秒前
2秒前
3秒前
嘟噜发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
辽东浅墨关注了科研通微信公众号
4秒前
5秒前
宓不尤发布了新的文献求助50
5秒前
囡囡完成签到,获得积分20
6秒前
7秒前
完美世界应助怕黑的青丝采纳,获得10
7秒前
dududu应助勤恳的珊采纳,获得20
7秒前
7秒前
宁少爷完成签到,获得积分0
8秒前
小何完成签到,获得积分10
8秒前
8秒前
zxk发布了新的文献求助10
8秒前
wy18567337203发布了新的文献求助10
8秒前
10秒前
10秒前
10秒前
10秒前
包容的千兰完成签到,获得积分10
11秒前
Daryl完成签到,获得积分10
11秒前
12秒前
jiaqi完成签到,获得积分10
12秒前
薛之谦完成签到,获得积分10
13秒前
13秒前
金扇扇发布了新的文献求助10
13秒前
叶小之完成签到 ,获得积分10
13秒前
细心雨兰发布了新的文献求助10
13秒前
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222211
求助须知:如何正确求助?哪些是违规求助? 2870793
关于积分的说明 8172331
捐赠科研通 2537863
什么是DOI,文献DOI怎么找? 1369824
科研通“疑难数据库(出版商)”最低求助积分说明 645597
邀请新用户注册赠送积分活动 619373