Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
风趣冷之完成签到 ,获得积分20
1秒前
行者发布了新的文献求助20
1秒前
Ava应助叶圣贤采纳,获得10
1秒前
1秒前
2秒前
吃猫的鱼发布了新的文献求助10
2秒前
4秒前
yanyuqing发布了新的文献求助10
5秒前
小蘑菇应助cc采纳,获得10
5秒前
xiaole完成签到,获得积分10
5秒前
6秒前
LMH发布了新的文献求助10
6秒前
一只盒子发布了新的文献求助10
6秒前
nenoaowu发布了新的文献求助10
7秒前
8秒前
彧九发布了新的文献求助30
9秒前
zydT发布了新的文献求助10
9秒前
小小发布了新的文献求助30
10秒前
11秒前
摸鱼鱼发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
完美世界应助shen采纳,获得10
13秒前
有无完成签到,获得积分10
13秒前
常正林完成签到,获得积分10
14秒前
提高vc完成签到 ,获得积分10
14秒前
热热发布了新的文献求助10
14秒前
优美水彤发布了新的文献求助10
14秒前
vivi完成签到,获得积分10
14秒前
研友_VZG7GZ应助迷路寄容采纳,获得10
15秒前
Frank应助萨尔莫斯采纳,获得10
15秒前
深情安青应助nenoaowu采纳,获得10
15秒前
ohh完成签到,获得积分10
16秒前
17秒前
森屿发布了新的文献求助10
17秒前
cc发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521585
求助须知:如何正确求助?哪些是违规求助? 4612927
关于积分的说明 14536362
捐赠科研通 4550430
什么是DOI,文献DOI怎么找? 2493661
邀请新用户注册赠送积分活动 1474837
关于科研通互助平台的介绍 1446233