已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Progressive growing of Generative Adversarial Networks for improving data augmentation and skin cancer diagnosis

过度拟合 计算机科学 人工智能 卷积神经网络 分割 机器学习 深度学习 皮肤癌 模式识别(心理学) 概化理论 残余物 人工神经网络 癌症 算法 数学 医学 统计 内科学
作者
Eduardo Pérez,Sebastián Ventura
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:141: 102556-102556 被引量:13
标识
DOI:10.1016/j.artmed.2023.102556
摘要

Early melanoma diagnosis is the most important factor in the treatment of skin cancer and can effectively reduce mortality rates. Recently, Generative Adversarial Networks have been used to augment data, prevent overfitting and improve the diagnostic capacity of models. However, its application remains a challenging task due to the high levels of inter and intra-class variance seen in skin images, limited amounts of data, and model instability. We present a more robust Progressive Growing of Adversarial Networks based on residual learning, which is highly recommended to ease the training of deep networks. The stability of the training process was increased by receiving additional inputs from preceding blocks. The architecture is able to produce plausible photorealistic synthetic 512 × 512 skin images, even with small dermoscopic and non-dermoscopic skin image datasets as problem domains. In this manner, we tackle the lack of data and the imbalance problems. Additionally, the proposed approach leverages a skin lesion boundary segmentation algorithm and transfer learning to enhance the diagnosis of melanoma. Inception score and Matthews Correlation Coefficient were used to measure the performance of the models. The architecture was evaluated qualitatively and quantitatively through the use of an extensive experimental study on sixteen datasets, illustrating its effectiveness in the diagnosis of melanoma. Finally, four state-of-the-art data augmentation techniques applied in five convolutional neural network models were significantly outperformed. The results indicated that a bigger number of trainable parameters will not necessarily obtain a better performance in melanoma diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
于某人发布了新的文献求助10
7秒前
源源完成签到 ,获得积分10
9秒前
9秒前
12秒前
田様应助拼搏的松鼠采纳,获得10
14秒前
yangling0124发布了新的文献求助10
15秒前
17秒前
neilphilosci完成签到 ,获得积分10
18秒前
20秒前
米奇完成签到,获得积分10
23秒前
普通西瓜完成签到,获得积分10
23秒前
long完成签到 ,获得积分10
24秒前
无花果应助周丹采纳,获得10
26秒前
27秒前
Owen应助sy采纳,获得10
27秒前
量子星尘发布了新的文献求助10
29秒前
逆流的鱼完成签到 ,获得积分10
34秒前
fairy完成签到 ,获得积分10
35秒前
清醒完成签到,获得积分10
36秒前
yydragen应助迅速的奇异果采纳,获得30
37秒前
40秒前
45秒前
47秒前
小蘑菇应助12采纳,获得10
48秒前
周宋完成签到 ,获得积分10
48秒前
苏乘风发布了新的文献求助10
48秒前
50秒前
伯赏不可发布了新的文献求助10
51秒前
51秒前
dengdengdeng发布了新的文献求助10
52秒前
旺大财完成签到 ,获得积分10
52秒前
53秒前
56秒前
57秒前
gaoyang123完成签到 ,获得积分10
57秒前
58秒前
苏乘风完成签到,获得积分20
59秒前
59秒前
12发布了新的文献求助10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959865
求助须知:如何正确求助?哪些是违规求助? 3506102
关于积分的说明 11127857
捐赠科研通 3238043
什么是DOI,文献DOI怎么找? 1789463
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021