Resilience measurement and dynamic optimization of container logistics supply chain under adverse events

弹性(材料科学) 容器(类型理论) 供应链 风险分析(工程) 系统动力学 计算机科学 控制(管理) 订单(交换) 可靠性工程 运营管理 运筹学 业务 工程类 机械工程 营销 物理 财务 人工智能 热力学
作者
Bowei Xu,Weiting Liu,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109202-109202 被引量:8
标识
DOI:10.1016/j.cie.2023.109202
摘要

Adverse events may cause chaotic phenomena such as uncertain delay, port congestion, and slow turnover efficiency of container ships, making the container logistics supply chain (CLSC) suffer a serious impact. In order to fully describe and model the adverse events, and further adjust and optimize the container logistics system, this study designs a two-stage container logistics supply chain model, mainly including a container pretreatment system (CPS) and a container handling system (CHS). Taking into account the real-time measurement of the overall CLSC resilience and the need to guide the adjustment method, a novel two-dimensional resilience index in terms of affordability and recovery ability is proposed to reveal the inherent resilience performance of the system. By decomposing the resilience index, the interaction mechanism between the internal elements can be further explored. An adaptive fuzzy double-feedback adjustment (AFDA) control structure is designed to optimize the two-stage CLSC system in order to alleviate the influence of adverse events, enhance the response and resilience performance, and stabilize the system as soon as possible. The simulation results show that under the influence of adverse events, the resilience performance and the ability to maintain stability is obviously weakened. Through feedback control of two-stage system responses, the above adverse effects can be effectively alleviated. Compared with other existing optimization strategies, the dynamic optimization method designed in is paper is more conducive to improving the response performance and enhancing the resilience of the system. The rationality and effectiveness are also verified by the simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
可爱的函函应助禾xi采纳,获得10
2秒前
Akim应助印第安老斑鸠采纳,获得10
2秒前
sofia发布了新的文献求助10
2秒前
一枝完成签到 ,获得积分10
3秒前
简单的梦菡完成签到,获得积分10
3秒前
4秒前
4秒前
科研通AI6应助猪猪hero采纳,获得10
5秒前
开心涛完成签到,获得积分10
5秒前
6秒前
chenluAccept发布了新的文献求助10
6秒前
7秒前
sadascaqwqw完成签到 ,获得积分10
7秒前
HarrisonChan完成签到,获得积分10
8秒前
8秒前
jerseyxin发布了新的文献求助10
8秒前
8秒前
9秒前
森林发布了新的文献求助10
9秒前
YUMMY发布了新的文献求助10
9秒前
漂亮水绿完成签到,获得积分10
10秒前
ffffwj2024完成签到,获得积分10
10秒前
10秒前
小二郎应助lisa采纳,获得10
11秒前
木木木完成签到,获得积分10
11秒前
漂流hane完成签到,获得积分10
11秒前
科研通AI6应助pluto采纳,获得10
11秒前
12秒前
12秒前
李爱国应助ayan采纳,获得10
12秒前
魔幻擎宇发布了新的文献求助10
12秒前
Ava应助伶俐乌采纳,获得10
13秒前
ikochou发布了新的文献求助10
14秒前
木木木发布了新的文献求助10
14秒前
peanut发布了新的文献求助30
14秒前
15秒前
转来转去发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465317
求助须知:如何正确求助?哪些是违规求助? 4569688
关于积分的说明 14320442
捐赠科研通 4496086
什么是DOI,文献DOI怎么找? 2463069
邀请新用户注册赠送积分活动 1452085
关于科研通互助平台的介绍 1427268