Resilience measurement and dynamic optimization of container logistics supply chain under adverse events

弹性(材料科学) 容器(类型理论) 供应链 风险分析(工程) 系统动力学 计算机科学 控制(管理) 订单(交换) 可靠性工程 运营管理 运筹学 业务 工程类 机械工程 营销 物理 财务 人工智能 热力学
作者
Bowei Xu,Weiting Liu,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109202-109202 被引量:8
标识
DOI:10.1016/j.cie.2023.109202
摘要

Adverse events may cause chaotic phenomena such as uncertain delay, port congestion, and slow turnover efficiency of container ships, making the container logistics supply chain (CLSC) suffer a serious impact. In order to fully describe and model the adverse events, and further adjust and optimize the container logistics system, this study designs a two-stage container logistics supply chain model, mainly including a container pretreatment system (CPS) and a container handling system (CHS). Taking into account the real-time measurement of the overall CLSC resilience and the need to guide the adjustment method, a novel two-dimensional resilience index in terms of affordability and recovery ability is proposed to reveal the inherent resilience performance of the system. By decomposing the resilience index, the interaction mechanism between the internal elements can be further explored. An adaptive fuzzy double-feedback adjustment (AFDA) control structure is designed to optimize the two-stage CLSC system in order to alleviate the influence of adverse events, enhance the response and resilience performance, and stabilize the system as soon as possible. The simulation results show that under the influence of adverse events, the resilience performance and the ability to maintain stability is obviously weakened. Through feedback control of two-stage system responses, the above adverse effects can be effectively alleviated. Compared with other existing optimization strategies, the dynamic optimization method designed in is paper is more conducive to improving the response performance and enhancing the resilience of the system. The rationality and effectiveness are also verified by the simulation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wynn完成签到 ,获得积分10
刚刚
善学以致用应助夏筱采纳,获得30
1秒前
追梦发布了新的文献求助10
1秒前
ll发布了新的文献求助10
2秒前
淳于易形完成签到,获得积分10
3秒前
www发布了新的文献求助10
3秒前
4秒前
5秒前
6秒前
华仔应助午曼曼采纳,获得10
7秒前
阳佟水蓉完成签到,获得积分10
7秒前
8秒前
zhao发布了新的文献求助10
9秒前
UU关注了科研通微信公众号
10秒前
邪王真眼完成签到 ,获得积分10
10秒前
yuanqi完成签到,获得积分10
11秒前
Valky发布了新的文献求助10
11秒前
Peix完成签到 ,获得积分10
12秒前
酷波er应助GUGU采纳,获得10
12秒前
Jasper应助杜兰特工队采纳,获得10
12秒前
12秒前
12秒前
Excalibur应助SDNUDRUG采纳,获得10
13秒前
roy完成签到 ,获得积分10
14秒前
wangsenyu发布了新的文献求助10
15秒前
15秒前
传奇3应助nextconnie采纳,获得10
16秒前
16秒前
17秒前
17秒前
隐形曼青应助IvenChou采纳,获得10
18秒前
中和皇极应助ll采纳,获得10
18秒前
adcc102发布了新的文献求助10
19秒前
华仔应助Valky采纳,获得10
19秒前
全悲完成签到,获得积分10
20秒前
SciGPT应助wangsenyu采纳,获得10
21秒前
22秒前
22秒前
hhhhhh发布了新的文献求助10
22秒前
fan发布了新的文献求助10
25秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462718
求助须知:如何正确求助?哪些是违规求助? 3056227
关于积分的说明 9051055
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506627
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695700