Resilience measurement and dynamic optimization of container logistics supply chain under adverse events

弹性(材料科学) 容器(类型理论) 供应链 风险分析(工程) 系统动力学 计算机科学 控制(管理) 订单(交换) 可靠性工程 运营管理 运筹学 业务 工程类 机械工程 营销 物理 财务 人工智能 热力学
作者
Bowei Xu,Weiting Liu,Junjun Li,Yongsheng Yang,Furong Wen,Haitao Song
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:180: 109202-109202 被引量:8
标识
DOI:10.1016/j.cie.2023.109202
摘要

Adverse events may cause chaotic phenomena such as uncertain delay, port congestion, and slow turnover efficiency of container ships, making the container logistics supply chain (CLSC) suffer a serious impact. In order to fully describe and model the adverse events, and further adjust and optimize the container logistics system, this study designs a two-stage container logistics supply chain model, mainly including a container pretreatment system (CPS) and a container handling system (CHS). Taking into account the real-time measurement of the overall CLSC resilience and the need to guide the adjustment method, a novel two-dimensional resilience index in terms of affordability and recovery ability is proposed to reveal the inherent resilience performance of the system. By decomposing the resilience index, the interaction mechanism between the internal elements can be further explored. An adaptive fuzzy double-feedback adjustment (AFDA) control structure is designed to optimize the two-stage CLSC system in order to alleviate the influence of adverse events, enhance the response and resilience performance, and stabilize the system as soon as possible. The simulation results show that under the influence of adverse events, the resilience performance and the ability to maintain stability is obviously weakened. Through feedback control of two-stage system responses, the above adverse effects can be effectively alleviated. Compared with other existing optimization strategies, the dynamic optimization method designed in is paper is more conducive to improving the response performance and enhancing the resilience of the system. The rationality and effectiveness are also verified by the simulation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小老贾发布了新的文献求助10
刚刚
25689完成签到,获得积分10
刚刚
刚刚
刚刚
共享精神应助ddddyooo采纳,获得10
1秒前
CodeCraft应助林一又采纳,获得10
1秒前
LXL发布了新的文献求助10
1秒前
呆萌谷兰完成签到,获得积分10
1秒前
小马甲应助TszPok采纳,获得10
1秒前
2秒前
冷静夜蕾完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
wanci应助好多鱼采纳,获得10
3秒前
4秒前
5秒前
5秒前
long0809完成签到,获得积分10
6秒前
果冻橙完成签到,获得积分10
6秒前
6秒前
6秒前
早起完成签到,获得积分10
6秒前
6秒前
蓝天白云发布了新的文献求助10
7秒前
世界小奇发布了新的文献求助10
7秒前
华仔应助XYN1采纳,获得10
7秒前
温柔梦易完成签到,获得积分10
9秒前
echo12发布了新的文献求助10
9秒前
给钱谢谢发布了新的文献求助10
9秒前
果冻橙发布了新的文献求助10
9秒前
贪玩的豪英完成签到,获得积分10
9秒前
9秒前
10秒前
LLL完成签到,获得积分10
10秒前
11秒前
猴哥完成签到,获得积分10
11秒前
小蜗爬爬应助义气山水采纳,获得10
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978