已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Toward Source-Free Cross Tissues Histopathological Cell Segmentation via Target-Specific Finetuning

计算机科学 分割 人工智能 域适应 图像分割 模式识别(心理学) 学习迁移 数字化病理学 源代码 光学(聚焦) 机器学习 分类器(UML) 物理 光学 操作系统
作者
Zhongyu Li,Chaoqun Li,Xiangde Luo,Yitian Zhou,Jihua Zhu,Cunbao Xu,Meng Yang,Yenan Wu,Yifeng Chen
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (9): 2666-2677 被引量:5
标识
DOI:10.1109/tmi.2023.3263465
摘要

Recognition and quantitative analytics of histopathological cells are the golden standard for diagnosing multiple cancers. Despite recent advances in deep learning techniques that have been widely investigated for the automated segmentation of various types of histopathological cells, the heavy dependency on specific histopathological image types with sufficient supervised annotations, as well as the limited access to clinical data in hospitals, still pose significant challenges in the application of computer-aided diagnosis in pathology. In this paper, we focus on the model generalization of cell segmentation towards cross-tissue histopathological images. Remarkably, a novel target-specific finetuning-based self-supervised domain adaptation framework is proposed to transfer the cell segmentation model to unlabeled target datasets, without access to source datasets and annotations. When performed on the target unlabeled histopathological image set, the proposed method only needs to tune very few parameters of the pre-trained model in a self-supervised manner. Considering the morphological properties of pathological cells, we introduce two constraint terms at both local and global levels into this framework to access more reliable predictions. The proposed cross-domain framework is validated on three different types of histopathological tissues, showing promising performance in self-supervised cell segmentation. Additionally, the whole framework can be further applied to clinical tools in pathology without accessing the original training image data. The code and dataset are released at: https://github.com/NeuronXJTU/SFDA-CellSeg.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李健的小迷弟应助培娜采纳,获得10
1秒前
2秒前
2秒前
花痴的含双完成签到 ,获得积分10
3秒前
苏晨发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
ljn完成签到 ,获得积分10
5秒前
5秒前
我是老大应助daixiaocui采纳,获得10
5秒前
6秒前
xumou完成签到 ,获得积分10
6秒前
luxiaoyu发布了新的文献求助10
7秒前
ww发布了新的文献求助20
7秒前
邓博发布了新的文献求助10
8秒前
8秒前
繁笙完成签到 ,获得积分10
9秒前
9秒前
QQQQ发布了新的文献求助10
12秒前
13秒前
超级萌琦完成签到,获得积分10
15秒前
krk发布了新的文献求助10
15秒前
meimei完成签到 ,获得积分10
15秒前
ww完成签到,获得积分20
15秒前
17秒前
鲤鱼初柳完成签到 ,获得积分10
18秒前
认真的如风完成签到,获得积分10
18秒前
迅哥发布了新的文献求助10
19秒前
Lucas应助静注氯化钾采纳,获得10
19秒前
20秒前
20秒前
21秒前
清枫发布了新的文献求助10
21秒前
22秒前
23秒前
苏晨完成签到 ,获得积分10
23秒前
umichdoc发布了新的文献求助10
25秒前
Ade发布了新的文献求助10
26秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477244
求助须知:如何正确求助?哪些是违规求助? 3068723
关于积分的说明 9109314
捐赠科研通 2760211
什么是DOI,文献DOI怎么找? 1514712
邀请新用户注册赠送积分活动 700431
科研通“疑难数据库(出版商)”最低求助积分说明 699509