Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management

医学 血压 随机对照试验 人口 糖尿病 全国健康与营养检查调查 内科学 环境卫生 内分泌学
作者
Kosuke Inoue,Susan Athey,Yusuke Tsugawa
出处
期刊:International Journal of Epidemiology [Oxford University Press]
卷期号:52 (4): 1243-1256 被引量:16
标识
DOI:10.1093/ije/dyad037
摘要

Abstract Background In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. Methods This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (standard treatment) from two randomized controlled trials (Systolic Blood Pressure Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure). We applied the machine-learning causal forest to develop a prediction model of individualized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular outcomes at 3 years. We then compared the performance of high-benefit approach (treating individuals with ITE >0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. Results We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. Conclusions The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hermoine发布了新的文献求助10
刚刚
yxq完成签到 ,获得积分10
刚刚
1秒前
Niat完成签到 ,获得积分10
2秒前
333cu完成签到,获得积分10
2秒前
小树苗完成签到,获得积分10
2秒前
乐乐应助cultromics采纳,获得10
3秒前
科研通AI2S应助冬云采纳,获得10
4秒前
标致的山水完成签到 ,获得积分10
4秒前
6秒前
AMG先生关注了科研通微信公众号
7秒前
哈哈哈完成签到 ,获得积分10
7秒前
不点儿发布了新的文献求助10
7秒前
Orange应助春夏秋冬采纳,获得10
8秒前
学术暴君完成签到,获得积分10
8秒前
Gx发布了新的文献求助10
8秒前
lili完成签到 ,获得积分10
9秒前
Hello应助XXXD采纳,获得10
9秒前
10秒前
ddsyg126完成签到,获得积分10
10秒前
12秒前
不安海蓝完成签到,获得积分10
13秒前
Gx完成签到,获得积分10
14秒前
乐乐应助辉哥采纳,获得10
14秒前
shisui完成签到,获得积分10
14秒前
高源源发布了新的文献求助10
14秒前
NexusExplorer应助洁净山灵采纳,获得10
17秒前
18秒前
王倩的老公完成签到 ,获得积分10
19秒前
烟花应助abc采纳,获得10
19秒前
刘阳完成签到,获得积分10
19秒前
20秒前
23秒前
无奈发布了新的文献求助10
23秒前
CodeCraft应助defndcdjjkb采纳,获得10
23秒前
NexusExplorer应助cyw采纳,获得10
24秒前
Shawn发布了新的文献求助10
24秒前
酷波er应助耍酷蛋挞采纳,获得10
25秒前
cy完成签到,获得积分10
25秒前
贝肯妮发布了新的文献求助30
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870