亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management

医学 血压 随机对照试验 人口 糖尿病 全国健康与营养检查调查 内科学 环境卫生 内分泌学
作者
Kosuke Inoue,Susan Athey,Yusuke Tsugawa
出处
期刊:International Journal of Epidemiology [Oxford University Press]
卷期号:52 (4): 1243-1256 被引量:16
标识
DOI:10.1093/ije/dyad037
摘要

Abstract Background In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. Methods This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (standard treatment) from two randomized controlled trials (Systolic Blood Pressure Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure). We applied the machine-learning causal forest to develop a prediction model of individualized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular outcomes at 3 years. We then compared the performance of high-benefit approach (treating individuals with ITE >0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. Results We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. Conclusions The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助科研通管家采纳,获得10
4秒前
joanna完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
21秒前
30秒前
52秒前
大方的黑猫完成签到,获得积分10
55秒前
研友_Lk9Y9Z发布了新的文献求助10
57秒前
59秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
研友_Lk9Y9Z完成签到,获得积分10
1分钟前
顺顺完成签到 ,获得积分10
1分钟前
outlast完成签到,获得积分20
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
CHRIS发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
烟花应助科研通管家采纳,获得30
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小雨点完成签到 ,获得积分10
4分钟前
CHRIS完成签到,获得积分10
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
比比谁的速度快应助swayqur采纳,获得30
4分钟前
SciGPT应助jinoir采纳,获得10
5分钟前
5分钟前
5分钟前
jinoir发布了新的文献求助10
5分钟前
YYY发布了新的文献求助10
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015140
求助须知:如何正确求助?哪些是违规求助? 3555113
关于积分的说明 11317861
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983