亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-based high-benefit approach versus conventional high-risk approach in blood pressure management

医学 血压 随机对照试验 人口 糖尿病 全国健康与营养检查调查 内科学 环境卫生 内分泌学
作者
Kosuke Inoue,Susan Athey,Yusuke Tsugawa
出处
期刊:International Journal of Epidemiology [Oxford University Press]
卷期号:52 (4): 1243-1256 被引量:16
标识
DOI:10.1093/ije/dyad037
摘要

Abstract Background In medicine, clinicians treat individuals under an implicit assumption that high-risk patients would benefit most from the treatment (‘high-risk approach’). However, treating individuals with the highest estimated benefit using a novel machine-learning method (‘high-benefit approach’) may improve population health outcomes. Methods This study included 10 672 participants who were randomized to systolic blood pressure (SBP) target of either <120 mmHg (intensive treatment) or <140 mmHg (standard treatment) from two randomized controlled trials (Systolic Blood Pressure Intervention Trial, and Action to Control Cardiovascular Risk in Diabetes Blood Pressure). We applied the machine-learning causal forest to develop a prediction model of individualized treatment effect (ITE) of intensive SBP control on the reduction in cardiovascular outcomes at 3 years. We then compared the performance of high-benefit approach (treating individuals with ITE >0) versus the high-risk approach (treating individuals with SBP ≥130 mmHg). Using transportability formula, we also estimated the effect of these approaches among 14 575 US adults from National Health and Nutrition Examination Surveys (NHANES) 1999–2018. Results We found that 78.9% of individuals with SBP ≥130 mmHg benefited from the intensive SBP control. The high-benefit approach outperformed the high-risk approach [average treatment effect (95% CI), +9.36 (8.33–10.44) vs +1.65 (0.36–2.84) percentage point; difference between these two approaches, +7.71 (6.79–8.67) percentage points, P-value <0.001]. The results were consistent when we transported the results to the NHANES data. Conclusions The machine-learning-based high-benefit approach outperformed the high-risk approach with a larger treatment effect. These findings indicate that the high-benefit approach has the potential to maximize the effectiveness of treatment rather than the conventional high-risk approach, which needs to be validated in future research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jerry发布了新的文献求助10
3秒前
4秒前
充电宝应助Re采纳,获得10
18秒前
Jerry完成签到,获得积分20
20秒前
量子星尘发布了新的文献求助10
30秒前
Lina完成签到,获得积分10
39秒前
43秒前
深情安青应助科研通管家采纳,获得10
44秒前
Re发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
1分钟前
于yu完成签到 ,获得积分10
1分钟前
2分钟前
开心完成签到 ,获得积分10
2分钟前
Re发布了新的文献求助10
2分钟前
sidashu完成签到,获得积分10
2分钟前
无花果应助Re采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
自律发布了新的文献求助10
3分钟前
脑洞疼应助wzy采纳,获得10
3分钟前
比格大王应助clearlove采纳,获得10
3分钟前
3分钟前
wzy发布了新的文献求助10
3分钟前
悟空爱吃酥橙完成签到,获得积分10
3分钟前
4分钟前
自律完成签到,获得积分10
4分钟前
ma121完成签到,获得积分10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
5分钟前
刺1656发布了新的文献求助10
5分钟前
5分钟前
jiangmi完成签到,获得积分10
5分钟前
Sene完成签到,获得积分10
6分钟前
andrele应助科研通管家采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
感动初蓝完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Exosomes Pipeline Insight, 2025 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671215
求助须知:如何正确求助?哪些是违规求助? 4912385
关于积分的说明 15134222
捐赠科研通 4829985
什么是DOI,文献DOI怎么找? 2586585
邀请新用户注册赠送积分活动 1540226
关于科研通互助平台的介绍 1498443