10.6 A 150kHz-BW 15-ENOB Incremental Zoom ADC with Skipped Sampling and Single Buffer Embedded Noise-Shaping SAR Quantizer

缩放 三角积分调变 计算机科学 带宽(计算) 物理 计算机网络 镜头(地质) 光学
作者
Zongnan Wang,Lu Jie,Zichen Kong,Mingtao Zhan,Yi Zhong,Yuan Wang,Xiyuan Tang
标识
DOI:10.1109/isscc42615.2023.10067696
摘要

Many $\text{IoT}$ applications demand ADCs with high resolution, medium bandwidth, and good energy efficiency. Lately, the incremental ADC is drawing r ising attention by favoring system integration with its easy multiplexing and simple digital filtering. By combining a low-power SAR with a low-distortion $\Delta\Sigma$ modulator, the zoom architecture achieves high energy efficiency and high resolution simultaneously [1–2]. However, the conventional zoom ADC can only convert quasi-static signals, since the two stages operate sequentially, and its $\Delta\Sigma$ conversion operates at a slow speed. The dynami c zoom architecture performs coarse and fine conversions concurrently, thus being able to convert varying inputs [3–4]. Yet, limited by the low quantization level of the fine $\Delta\Sigma \mathrm{M}$ , it requires a large OSR for the targeted resolution (e.g., 282.25 in [3] and 87.5 in [4]), which restricts the input bandwidth to several tens of $\text{kHz}$ , Moreover, its loop filter relies on charge transfer, where each conversion requires dedicated sampling for its residue generation. As a result, in addition to the limited input bandwidth, the largely repeated sampling operation incurs extra power and design challenge for input drivers. The CT zoom architecture features easy driving while still requiring a large conversion cycle of 8192 in [5]. Recently, the emerging noise-shaping (NS) SAR ADC employs the efficient SAR for the multi-bit quantizer, significantly reducing conversion cycles [6–7]. However, without the initial coarse quantization, high loop filter orders are usually required for hig h -resolution applications, raising significant hardware cost and design complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愤怒的源智完成签到 ,获得积分10
1秒前
1秒前
1秒前
ganson完成签到 ,获得积分10
1秒前
1秒前
HopeStar发布了新的文献求助10
2秒前
2秒前
bkagyin应助YL采纳,获得10
3秒前
共享精神应助一直采纳,获得10
3秒前
4秒前
无聊先知完成签到,获得积分10
4秒前
传奇3应助CC采纳,获得10
4秒前
Promise发布了新的文献求助10
4秒前
习习发布了新的文献求助100
5秒前
5秒前
6秒前
someone完成签到,获得积分10
6秒前
6秒前
wanyanjin应助南方姑娘采纳,获得10
6秒前
Star1983发布了新的文献求助10
7秒前
岁月轮回发布了新的文献求助10
7秒前
7秒前
如晴完成签到,获得积分10
7秒前
平淡的芯阳完成签到 ,获得积分10
7秒前
JonyiCheng发布了新的文献求助10
8秒前
8秒前
帅气的乘云完成签到,获得积分10
8秒前
吃点红糖馒头完成签到,获得积分10
9秒前
良月二十一完成签到 ,获得积分10
9秒前
斯文败类应助听粥采纳,获得10
10秒前
可爱的函函应助strings采纳,获得10
10秒前
10秒前
仚屳完成签到,获得积分10
10秒前
Naixi完成签到,获得积分10
10秒前
今后应助HU采纳,获得10
10秒前
su完成签到 ,获得积分10
12秒前
平淡的依白完成签到,获得积分20
12秒前
xinchengzhu关注了科研通微信公众号
12秒前
爱静静应助tao采纳,获得10
13秒前
iNk应助Rebekah采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678