中膜藻
肌醇
盐生植物
生物
景天酸代谢
少年
植物
生物化学
光合作用
盐度
生态学
受体
作者
Cheng-Hsun Li,Yun-Cheng Tu,Meng-Fang Wen,Hsing-Jung Tien,Hungchen Emilie Yen
摘要
Mesembryanthemum crystallinum L. (ice plant) develops salt tolerance during the transition from the juvenile to the adult stage through progressive morphological, physiological, biochemical, and molecular changes. Myo-inositol is the precursor for the synthesis of compatible solute D-pinitol and promotes Na+ transport in ice plants. We previously showed that supplying myo-inositol to 9-day-old seedlings alleviates salt damage by coordinating the expression of genes involved in inositol synthesis and transport, affecting osmotic adjustment and the Na/K balance. In this study, we examined the effects of myo-inositol on physiological parameters and inositol-related gene expression in early- and late-stage juvenile plants. The addition of myo-inositol to salt-treated, hydroponically grown late juvenile plants had no significant effects on growth or photosynthesis. In contrast, supplying exogenous myo-inositol to salt-treated early juvenile plants increased leaf biomass, relative water content, and chlorophyll content and improved PSII activity and CO2 assimilation. The treatment combining high salt and myo-inositol synergistically induced the expression of myo-inositol phosphate synthase (INPS), myo-inositol O-methyltransferase (IMT), and inositol transporters (INTs), which modulated root-to-shoot Na/K ratio and increased leaf D-pinitol content. The results indicate that sufficient myo-inositol is a prerequisite for high salt tolerance in ice plant.
科研通智能强力驱动
Strongly Powered by AbleSci AI