亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GraphPro: An interpretable graph neural network-based model for identifying promoters in multiple species

可解释性 编码 计算机科学 图形 发起人 人工神经网络 人工智能 卷积神经网络 机器学习 计算生物学 理论计算机科学 生物 基因 遗传学 基因表达
作者
Qi Zhang,Yuxiao Wei,Liwei Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:180: 108974-108974
标识
DOI:10.1016/j.compbiomed.2024.108974
摘要

Promoters are DNA sequences that bind with RNA polymerase to initiate transcription, regulating this process through interactions with transcription factors. Accurate identification of promoters is crucial for understanding gene expression regulation mechanisms and developing therapeutic approaches for various diseases. However, experimental techniques for promoter identification are often expensive, time-consuming, and inefficient, necessitating the development of accurate and efficient computational models for this task. Enhancing the model's ability to recognize promoters across multiple species and improving its interpretability pose significant challenges. In this study, we introduce a novel interpretable model based on graph neural networks, named GraphPro, for multi-species promoter identification. Initially, we encode the sequences using k-tuple nucleotide frequency pattern, dinucleotide physicochemical properties, and dna2vec. Subsequently, we construct two feature extraction modules based on convolutional neural networks and graph neural networks. These modules aim to extract specific motifs from the promoters, learn their dependencies, and capture the underlying structural features of the promoters, providing a more comprehensive representation. Finally, a fully connected neural network predicts whether the input sequence is a promoter. We conducted extensive experiments on promoter datasets from eight species, including Human, Mouse, and Escherichia coli. The experimental results show that the average Sn, Sp, Acc and MCC values of GraphPro are 0.9123, 0.9482, 0.8840 and 0.7984, respectively. Compared with previous promoter identification methods, GraphPro not only achieves better recognition accuracy on multiple species, but also outperforms all previous methods in cross-species prediction ability. Furthermore, by visualizing GraphPro's decision process and analyzing the sequences matching the transcription factor binding motifs captured by the model, we validate its significant advantages in biological interpretability. The source code for GraphPro is available at https://github.com/liuliwei1980/GraphPro.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潮人完成签到 ,获得积分10
28秒前
31秒前
康康舞曲完成签到 ,获得积分10
36秒前
靳言发布了新的文献求助10
43秒前
634301059完成签到 ,获得积分10
46秒前
英姑应助靳言采纳,获得10
57秒前
winter1127发布了新的文献求助10
59秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
斯文的苡完成签到,获得积分10
1分钟前
1分钟前
Owen应助淡淡无春采纳,获得30
1分钟前
1分钟前
多边棱发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
隐形曼青应助andrele采纳,获得10
2分钟前
2分钟前
2分钟前
归尘应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
热情依白应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
科目三应助andrele采纳,获得10
3分钟前
生动思萱发布了新的文献求助10
3分钟前
生动思萱关注了科研通微信公众号
4分钟前
4分钟前
所所应助andrele采纳,获得10
4分钟前
5分钟前
靳言发布了新的文献求助10
5分钟前
5分钟前
我是老大应助andrele采纳,获得10
5分钟前
锅包肉完成签到 ,获得积分10
5分钟前
靳言完成签到,获得积分20
6分钟前
卡卡光波完成签到,获得积分10
6分钟前
英姑应助靳言采纳,获得10
6分钟前
爱静静完成签到,获得积分0
6分钟前
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307414
求助须知:如何正确求助?哪些是违规求助? 2941030
关于积分的说明 8500245
捐赠科研通 2615428
什么是DOI,文献DOI怎么找? 1428900
科研通“疑难数据库(出版商)”最低求助积分说明 663595
邀请新用户注册赠送积分活动 648461