单宁酸
羧甲基纤维素
电解质
阳极
锌
纤维素
材料科学
化学工程
化学
离子
无机化学
有机化学
钠
电极
工程类
物理化学
作者
Xiangye Li,Yuan Li,Rui Wang,Dahui Wang,Fen Ran
标识
DOI:10.1016/j.cej.2024.153865
摘要
Zinc metal batteries have garnered considerable attention ascribing to its cost effectiveness, intrinsic safety, and eco-friendliness. Nevertheless, zinc metal batteries yet are confronted with service life issue arising from dendrite and side reactions. Here, a highly ionic confined and hydrogen bond-enhanced tannic acid-modified carboxymethyl cellulose-based hybrid hydrogel electrolyte is designed for regulating structure of Zn2+ solvent and inhibiting dendrites growth, and simultaneously remaining operational under severe condition like low temperature. The phenolic hydroxyl group in tannic acid and the carboxyl group in carboxymethyl cellulose can respectively engage in chelation and coordination with Zn2+ to regulate Zn2+ transportation channel for guiding uniform zinc plating/stripping. Simultaneously, the enhanced ion confinement effect changes the solvation structure of Zn2+ to reduce H2O activity, effectively alleviating corrosion and hydrogen evolution reaction induced by H2O. Based on the principles of thermodynamics and reaction kinetics combined with theoretical calculations and experimental findings, the mechanism underlying its pivotal role in attenuating hydrogen evolution and fostering zinc deposition is elucidated systematically. The carboxymethyl cellulose/tannic acid hydrogel electrolyte endows exceptional cycling longevity (2, 100 h at 0.5 mA cm−2/0.25 mAh cm−2) for Zn||Zn battery, as well as high Coulombic efficiency for Zn||Cu battery (averagely 98.31 % within 500 cycles at 1 mA cm−2/mAh cm−2. Moreover, the assembled Zn||Zn battery, Zn||NH4V4O10 battery and Zn||NH4V4O10 pouch battery utilizing carboxymethyl cellulose/tannic acid hydrogel electrolyte can even function normally under severe conditions like low temperature and bending. This study provides valuable reference to develop hydrogel electrolytes with the ability to withstand low temperature and stabilize zinc anode.
科研通智能强力驱动
Strongly Powered by AbleSci AI