电子设备和系统的热管理
材料科学
热导率
毛细管作用
多孔性
热阻
热的
蜂巢
复合材料
纳米技术
多孔介质
消散
机械工程
热力学
物理
工程类
作者
Luqi Liu,Chao Fu,Shuangyang Li,Lijing Zhu,Fuliang Ma,Zhixiang Zeng,Gang Wang
出处
期刊:Small
[Wiley]
日期:2024-07-10
标识
DOI:10.1002/smll.202403040
摘要
Superspreading surfaces with excellent water transport efficiency are highly desirable for addressing thermal failures through the liquid-vapor phase change of water in electronics thermal management applications. However, the trade-off between capillary pressure and viscous resistance in traditional superspreading surfaces with micro/ nanostructures poses a longstanding challenge in the development of superspreading surfaces with high cooling efficiency in confined spaces. Herein, a heat-treated hierarchical porous enhanced superspreading surface (HTHP) for highly efficient electronic cooling is proposed. Compared with the single porous structures in nanograss, nanosheets, and copper foam, HTHP with hierarchical honeycomb pores effectively resolves the trade-off effect by introducing large vertical through-pores to reduce viscous resistance, and connected small pores to provide sufficient capillary pressure synergistically. HTHP exhibits excellent capillary performance in both horizontal spreading and vertical rising. Despite a thickness of only 0.33 mm, the as-prepared ultrathin vapor chamber (UTVC) fabricated to exploit the superior capillary performance of HTHP achieved effective heat dissipation with outstanding thermal conductivity (12 121 Wm
科研通智能强力驱动
Strongly Powered by AbleSci AI