已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Boosting Droplet Transport for Fog Harvest

材料科学 Boosting(机器学习) 纳米技术 工程物理 计算机科学 人工智能 物理
作者
Qianqin Zhang,Siyu Wang,Jinlong Song,Xiaolong Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (45): 62838-62850 被引量:1
标识
DOI:10.1021/acsami.4c10213
摘要

Wedge-shaped superhydrophilic tracks have been considered as one of the most effective ways to transport droplets for diverse cutting-edge applications, e.g., energy harvesting and lab-on-a-chip devices. Although significant progress, such as serial wedge-shaped tracks with curved edges, has evolved to advance the liquid transport, the ultrafast and long-distance transporting of drop-shaped liquid remains challenging. Here, inspired by the cactus spine that enables fast droplet transport and the serial spindle knot of spider silk, which is capable of collecting condensate from a wide range of distances, we created serial wedge-shaped superhydrophilic patterns and optimized their side edges with a convex brachistochrone curve to boost the acceleration. The junctions of the serial patterns were meanwhile reformed into concave brachistochrone curves to lower the energy barrier for sustained transport. For transporting the liquid in drop shapes to the long distance at high velocity, the wedge-shaped tracks were slenderized to the greatest extent to suppress the liquid spreading and thus prevent the degradation of the Laplace driving force. Moreover, the junction that determines the energy barrier of droplet striding was carefully designed based on the principle of minimizing momentum loss. The exquisite architecture design pushed the droplet transport to a maximum instantaneous velocity of 207.7 mm·s–1 and an outermost transport distance of 120.5 mm, exceeding most wettability or geometric gradient based reports. The transported volume of the droplets can be readily regulated by simply scaling the created architectures. The enhanced droplet transport facilitates the motion and departure of the cohered droplets, enabling a 1.9-fold rise of the water collection rate and 12-fold increase of the heat transfer coefficient during the fog harvest test. This scalable, controllable, and easily fabricatable surface design provides an essential pathway in realizing high-performance manipulation of droplets and possibly pioneers substantial innovative applications in multidisciplinary fields. Those include but are not limited to energy harvesting, lab-on-a-chip devices, and MEMS systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
坚强煜城发布了新的文献求助10
刚刚
2秒前
杳鸢应助飞快的访文采纳,获得10
5秒前
奥特曼应助qyliu采纳,获得20
5秒前
陈文青完成签到,获得积分10
5秒前
lllll发布了新的文献求助10
6秒前
华仔应助十月采纳,获得10
7秒前
10秒前
重要手机发布了新的文献求助10
14秒前
爆米花应助刘璇1采纳,获得10
15秒前
16秒前
18秒前
18秒前
wind完成签到,获得积分10
18秒前
Sx13a完成签到,获得积分10
19秒前
TexasLiyue完成签到,获得积分10
21秒前
杭子轩发布了新的文献求助10
21秒前
十月发布了新的文献求助10
23秒前
23秒前
25秒前
坚强煜城完成签到,获得积分20
25秒前
Mary发布了新的文献求助10
26秒前
刘璇1发布了新的文献求助10
30秒前
拼搏的宇完成签到 ,获得积分10
30秒前
31秒前
Sx13a发布了新的文献求助10
34秒前
奇拉维特完成签到 ,获得积分10
35秒前
勤恳白云发布了新的文献求助10
36秒前
彳亍完成签到 ,获得积分10
37秒前
ding应助瘦弱小曹采纳,获得10
38秒前
风枞完成签到 ,获得积分10
38秒前
40秒前
唐诗111发布了新的文献求助10
42秒前
巷南棠发布了新的文献求助10
42秒前
43秒前
lllll完成签到 ,获得积分10
44秒前
wenwen发布了新的文献求助10
45秒前
Owen应助坚强煜城采纳,获得10
45秒前
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497091
求助须知:如何正确求助?哪些是违规求助? 3081664
关于积分的说明 9168973
捐赠科研通 2774840
什么是DOI,文献DOI怎么找? 1522602
邀请新用户注册赠送积分活动 706128
科研通“疑难数据库(出版商)”最低求助积分说明 703220