Diffusion Models, Image Super-Resolution, and Everything: A Survey

扩散 图像(数学) 分辨率(逻辑) 计算机视觉 计算机科学 人工智能 物理 热力学
作者
Brian B. Moser,Arundhati S. Shanbhag,Federico Raue,Stanislav Frolov,Sebastian Palacio,Andreas Dengel
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21 被引量:7
标识
DOI:10.1109/tnnls.2024.3476671
摘要

Diffusion Models (DMs) have disrupted the image Super-Resolution (SR) field and further closed the gap between image quality and human perceptual preferences.They are easy to train and can produce very high-quality samples that exceed the realism of those produced by previous generative methods.Despite their promising results, they also come with new challenges that need further research: high computational demands, comparability, lack of explainability, color shifts, and more.Unfortunately, entry into this field is overwhelming because of the abundance of publications.To address this, we provide a unified recount of the theoretical foundations underlying DMs applied to image SR and offer a detailed analysis that underscores the unique characteristics and methodologies within this domain, distinct from broader existing reviews in the field.This survey articulates a cohesive understanding of DM principles and explores current research avenues, including alternative input domains, conditioning techniques, guidance mechanisms, corruption spaces, and zero-shot learning approaches.By offering a detailed examination of the evolution and current trends in image SR through the lens of DMs, this survey sheds light on the existing challenges and charts potential future directions, aiming to inspire further innovation in this rapidly advancing area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
keyantong完成签到 ,获得积分10
4秒前
booshu完成签到,获得积分10
5秒前
jy发布了新的文献求助10
6秒前
朴斓完成签到,获得积分10
6秒前
科研通AI5应助魏伯安采纳,获得10
9秒前
哈密哈密完成签到,获得积分10
9秒前
9秒前
Ava应助浪迹天涯采纳,获得10
9秒前
10秒前
安南发布了新的文献求助10
10秒前
11秒前
healthy完成签到 ,获得积分10
11秒前
12秒前
刘大可完成签到,获得积分10
12秒前
15秒前
su发布了新的文献求助10
15秒前
rookie发布了新的文献求助10
16秒前
方勇飞发布了新的文献求助10
17秒前
郭菱香完成签到 ,获得积分20
17秒前
皮念寒完成签到,获得积分10
17秒前
顺其自然_666888完成签到,获得积分10
17秒前
18秒前
向上的小v完成签到 ,获得积分10
19秒前
19秒前
21秒前
酷酷紫蓝完成签到 ,获得积分10
21秒前
21秒前
方勇飞完成签到,获得积分10
21秒前
LYZ完成签到,获得积分10
21秒前
黄景滨完成签到 ,获得积分20
22秒前
22秒前
123456完成签到,获得积分20
22秒前
hkl1542完成签到,获得积分10
23秒前
23秒前
caohuijun发布了新的文献求助10
24秒前
杳鸢应助韦颖采纳,获得20
25秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824