Diffusion Models, Image Super-Resolution, and Everything: A Survey

扩散 图像(数学) 分辨率(逻辑) 计算机视觉 计算机科学 人工智能 物理 热力学
作者
Brian B. Moser,Arundhati S. Shanbhag,Federico Raue,Stanislav Frolov,Sebastian Palacio,Andreas Dengel
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-21
标识
DOI:10.1109/tnnls.2024.3476671
摘要

Diffusion models (DMs) have disrupted the image super-resolution (SR) field and further closed the gap between image quality and human perceptual preferences. They are easy to train and can produce very high-quality samples that exceed the realism of those produced by previous generative methods. Despite their promising results, they also come with new challenges that need further research: high computational demands, comparability, lack of explainability, color shifts, and more. Unfortunately, entry into this field is overwhelming because of the abundance of publications. To address this, we provide a unified recount of the theoretical foundations underlying DMs applied to image SR and offer a detailed analysis that underscores the unique characteristics and methodologies within this domain, distinct from broader existing reviews in the field. This article articulates a cohesive understanding of DM principles and explores current research avenues, including alternative input domains, conditioning techniques, guidance mechanisms, corruption spaces, and zero-shot learning approaches. By offering a detailed examination of the evolution and current trends in image SR through the lens of DMs, this article sheds light on the existing challenges and charts potential future directions, aiming to inspire further innovation in this rapidly advancing area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助酷炫的傲易采纳,获得10
刚刚
星辰大海应助16采纳,获得20
刚刚
隐形曼青应助邱志鸿采纳,获得10
2秒前
刻苦熊猫应助喵了个咪采纳,获得10
2秒前
yyh09719完成签到,获得积分10
2秒前
WQ发布了新的文献求助10
2秒前
付创完成签到,获得积分10
3秒前
huangllza发布了新的文献求助10
3秒前
4秒前
5秒前
wen发布了新的文献求助10
5秒前
fighting完成签到,获得积分10
6秒前
muzi发布了新的文献求助20
6秒前
康康发布了新的文献求助10
6秒前
6秒前
搜集达人应助娜娜采纳,获得10
7秒前
7秒前
邱志鸿完成签到,获得积分10
7秒前
FashionBoy应助奔跑的棉花采纳,获得10
8秒前
8秒前
油炸小酥肉完成签到,获得积分10
8秒前
8秒前
恩佐·费尔南德斯完成签到,获得积分10
8秒前
酷波er应助辉忆采纳,获得10
9秒前
zhang狗子发布了新的文献求助10
9秒前
科研愤青完成签到,获得积分10
9秒前
9秒前
FashionBoy应助郝宝真采纳,获得10
10秒前
11秒前
12秒前
pluto应助求助大神们采纳,获得50
12秒前
WQ完成签到,获得积分10
12秒前
回忆发布了新的文献求助10
12秒前
wanci应助kiki采纳,获得10
12秒前
李小宁发布了新的文献求助10
13秒前
taobao完成签到,获得积分10
15秒前
希望天下0贩的0应助雍雍采纳,获得10
15秒前
15秒前
15秒前
阿辉发布了新的文献求助10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153026
求助须知:如何正确求助?哪些是违规求助? 2804161
关于积分的说明 7857753
捐赠科研通 2461956
什么是DOI,文献DOI怎么找? 1310610
科研通“疑难数据库(出版商)”最低求助积分说明 629314
版权声明 601794