Identification of millet origin using terahertz spectroscopy combined with ensemble learning

机器学习 支持向量机 随机森林 预处理器 集成学习 模式识别(心理学) 堆积 计算机科学 数据挖掘 算法 人工智能 物理 核磁共振
作者
Xianhua Yin,Hao Tian,Fuqiang Zhang,Chuanpei Xu,Qiang Cai,Yongbing Wei
出处
期刊:Infrared Physics & Technology [Elsevier BV]
卷期号:142: 105547-105547
标识
DOI:10.1016/j.infrared.2024.105547
摘要

It's crucial for both producers and consumers to accurately trace the origin of millet, given the significant differences in price and taste that exist between millets from various origins. The traditional method of identifying the origin of millet is time-consuming, laborious, complex, and destructive. In this study, a new method for fast and non-destructive differentiation of millet origins is developed by combining terahertz time domain spectroscopy with ensemble learning. Firstly, three machine learning algorithms, namely support vector machine (SVM), random forest (RF), and kernel extreme learning machine (KELM), were used to build different discriminative models, and then the impact of six different preprocessing methods on the models' classification performance was compared. It was observed that models employing Savitzky-Golay preprocessing exhibited pronounced superiority in accurately determining the millet's geographical origins. Building upon these findings, the research introduces an innovative ensemble learning strategy, leveraging both topsis and stacking techniques, to harness the collective strengths of the three algorithms. The outcomes of this approach reveal its remarkable capacity to distinguish millets originating from five distinct locations without the necessity for any parameter fine-tuning. The accuracy, F1 score, and Kappa on the prediction set are all 100 %, which significantly outperforms the single model, traditional voting method, and stacking method. The culmination of this study suggests that the integration of terahertz time-domain spectroscopy and TOPSIS-Stacking ensemble learning emerges as a promising method for the swift and non-intrusive discrimination of millet geographical origins with remarkable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyon完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
lxdfrank发布了新的文献求助10
1秒前
对对对完成签到 ,获得积分10
1秒前
椰子壳完成签到,获得积分10
2秒前
饼饼发布了新的文献求助30
2秒前
小马甲应助无限绿旋采纳,获得10
2秒前
香蕉觅云应助FLZLC采纳,获得10
3秒前
lothary发布了新的文献求助10
3秒前
YCW完成签到,获得积分10
3秒前
圆圆发布了新的文献求助10
3秒前
4秒前
gwh68964402gwh完成签到,获得积分10
4秒前
4秒前
科研狗111完成签到,获得积分10
4秒前
小白一枚发布了新的文献求助30
5秒前
小巧亦竹发布了新的文献求助30
5秒前
6秒前
tiankong完成签到,获得积分10
6秒前
丘比特应助高高采纳,获得10
7秒前
可爱的函函应助高大梦琪采纳,获得10
7秒前
仙女完成签到 ,获得积分10
7秒前
8秒前
旎旎发布了新的文献求助10
8秒前
hala安胖胖发布了新的文献求助10
10秒前
调皮的乐天完成签到,获得积分10
10秒前
兰天完成签到,获得积分10
11秒前
美好斓发布了新的文献求助150
12秒前
12秒前
彭于晏应助圆圆采纳,获得10
12秒前
李爱国应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
在水一方应助淡然的夜柳采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
13秒前
烟花应助科研通管家采纳,获得10
13秒前
Ava应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004