Identification of millet origin using terahertz spectroscopy combined with ensemble learning

机器学习 支持向量机 随机森林 预处理器 集成学习 模式识别(心理学) 堆积 计算机科学 数据挖掘 算法 人工智能 物理 核磁共振
作者
Xianhua Yin,Hao Tian,Fuqiang Zhang,Chuanpei Xu,Qiang Cai,Yongbing Wei
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:142: 105547-105547
标识
DOI:10.1016/j.infrared.2024.105547
摘要

It's crucial for both producers and consumers to accurately trace the origin of millet, given the significant differences in price and taste that exist between millets from various origins. The traditional method of identifying the origin of millet is time-consuming, laborious, complex, and destructive. In this study, a new method for fast and non-destructive differentiation of millet origins is developed by combining terahertz time domain spectroscopy with ensemble learning. Firstly, three machine learning algorithms, namely support vector machine (SVM), random forest (RF), and kernel extreme learning machine (KELM), were used to build different discriminative models, and then the impact of six different preprocessing methods on the models' classification performance was compared. It was observed that models employing Savitzky-Golay preprocessing exhibited pronounced superiority in accurately determining the millet's geographical origins. Building upon these findings, the research introduces an innovative ensemble learning strategy, leveraging both topsis and stacking techniques, to harness the collective strengths of the three algorithms. The outcomes of this approach reveal its remarkable capacity to distinguish millets originating from five distinct locations without the necessity for any parameter fine-tuning. The accuracy, F1 score, and Kappa on the prediction set are all 100 %, which significantly outperforms the single model, traditional voting method, and stacking method. The culmination of this study suggests that the integration of terahertz time-domain spectroscopy and TOPSIS-Stacking ensemble learning emerges as a promising method for the swift and non-intrusive discrimination of millet geographical origins with remarkable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luo发布了新的文献求助10
1秒前
cccc发布了新的文献求助10
1秒前
xiaxia42发布了新的文献求助10
1秒前
PLM发布了新的文献求助10
2秒前
2秒前
蓝胖子发布了新的文献求助10
2秒前
lalala发布了新的文献求助10
2秒前
2秒前
激昂的沂发布了新的文献求助10
2秒前
坦率尔琴发布了新的文献求助10
2秒前
Affenyi发布了新的文献求助10
3秒前
3秒前
一条裸游的鱼完成签到,获得积分10
3秒前
4秒前
乐乐应助wjx采纳,获得10
4秒前
咯咯哒1完成签到 ,获得积分10
5秒前
欣辰发布了新的文献求助10
5秒前
3030完成签到,获得积分10
6秒前
王老师完成签到,获得积分10
7秒前
xcy完成签到,获得积分10
7秒前
andy完成签到,获得积分20
7秒前
徐名凯发布了新的文献求助10
8秒前
8秒前
9秒前
zwt发布了新的文献求助10
9秒前
9秒前
科研通AI6应助嘉嘉采纳,获得10
9秒前
酷波er应助缥缈灵煌采纳,获得10
9秒前
YY发布了新的文献求助10
9秒前
Ava应助Jackylee采纳,获得10
9秒前
qqq发布了新的文献求助20
10秒前
10秒前
10秒前
WWW关注了科研通微信公众号
10秒前
11秒前
11秒前
第七个星球完成签到,获得积分10
12秒前
JamesPei应助炙热的振家采纳,获得10
12秒前
bbbao发布了新的文献求助10
12秒前
顺心纸鹤发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410477
求助须知:如何正确求助?哪些是违规求助? 4527894
关于积分的说明 14113380
捐赠科研通 4442528
什么是DOI,文献DOI怎么找? 2437973
邀请新用户注册赠送积分活动 1429999
关于科研通互助平台的介绍 1407906