Identification of millet origin using terahertz spectroscopy combined with ensemble learning

机器学习 支持向量机 随机森林 预处理器 集成学习 模式识别(心理学) 堆积 计算机科学 数据挖掘 算法 人工智能 物理 核磁共振
作者
Xianhua Yin,Hao Tian,Fuqiang Zhang,Chuanpei Xu,Qiang Cai,Yongbing Wei
出处
期刊:Infrared Physics & Technology [Elsevier]
卷期号:142: 105547-105547
标识
DOI:10.1016/j.infrared.2024.105547
摘要

It's crucial for both producers and consumers to accurately trace the origin of millet, given the significant differences in price and taste that exist between millets from various origins. The traditional method of identifying the origin of millet is time-consuming, laborious, complex, and destructive. In this study, a new method for fast and non-destructive differentiation of millet origins is developed by combining terahertz time domain spectroscopy with ensemble learning. Firstly, three machine learning algorithms, namely support vector machine (SVM), random forest (RF), and kernel extreme learning machine (KELM), were used to build different discriminative models, and then the impact of six different preprocessing methods on the models' classification performance was compared. It was observed that models employing Savitzky-Golay preprocessing exhibited pronounced superiority in accurately determining the millet's geographical origins. Building upon these findings, the research introduces an innovative ensemble learning strategy, leveraging both topsis and stacking techniques, to harness the collective strengths of the three algorithms. The outcomes of this approach reveal its remarkable capacity to distinguish millets originating from five distinct locations without the necessity for any parameter fine-tuning. The accuracy, F1 score, and Kappa on the prediction set are all 100 %, which significantly outperforms the single model, traditional voting method, and stacking method. The culmination of this study suggests that the integration of terahertz time-domain spectroscopy and TOPSIS-Stacking ensemble learning emerges as a promising method for the swift and non-intrusive discrimination of millet geographical origins with remarkable precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
自然白安发布了新的文献求助10
5秒前
zlp发布了新的文献求助10
5秒前
完美世界应助OncE采纳,获得10
6秒前
美好芳发布了新的文献求助10
6秒前
羽婕发布了新的文献求助20
6秒前
田様应助诚心的月光采纳,获得10
8秒前
轻松的纸鹤完成签到,获得积分10
10秒前
斯文蘑菇应助科研通管家采纳,获得10
11秒前
lyl19880908应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
WM应助科研通管家采纳,获得10
11秒前
shinysparrow应助科研通管家采纳,获得100
11秒前
情怀应助科研通管家采纳,获得10
11秒前
情怀应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
思源应助科研通管家采纳,获得10
12秒前
12秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
tianguoheng发布了新的文献求助30
15秒前
17秒前
wyhhh发布了新的文献求助10
17秒前
Liben完成签到,获得积分10
17秒前
英俊的铭应助洁仔采纳,获得10
18秒前
小唐完成签到,获得积分10
19秒前
w_发布了新的文献求助20
19秒前
19秒前
星露谷农民完成签到,获得积分10
21秒前
顺意完成签到,获得积分20
23秒前
NN发布了新的文献求助10
23秒前
tumbler发布了新的文献求助10
23秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343057
求助须知:如何正确求助?哪些是违规求助? 2970087
关于积分的说明 8642705
捐赠科研通 2650072
什么是DOI,文献DOI怎么找? 1451108
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407