Stochastic Sampled-Data Model Predictive Control for T-S Fuzzy Systems With Unknown Stochastic Sampling Probability

计算机科学 概率密度函数 采样(信号处理) 随机建模 模糊逻辑 随机过程 模糊控制系统 数学 统计 人工智能 滤波器(信号处理) 计算机视觉
作者
Honggui Han,Shijia Fu,Haoyuan Sun,Zheng Liu
出处
期刊:IEEE Transactions on Fuzzy Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 5613-5624
标识
DOI:10.1109/tfuzz.2024.3423009
摘要

In practical applications, sampled-data systems are often affected by unforeseen physical constraints that may cause deviations in the sampling interval from the expected value and result in fluctuations in a probabilistic way, where the probability distribution of stochastic sampling intervals is often time-varying and unknown. How to design a stable tracking controller for sampled-data control systems affected by unknown stochastic sampling probability is a challenging task. A stochastic sampled-data model predictive control (SSDMPC) strategy for T-S fuzzy systems (TSFSs) is proposed to overcome this challenge. First, based on the input delay approach, the considered system is modeled as a continuous-time TSFS with stochastic input delay. Then, the stochastic nature of the sampling interval is effectively mapped to the input delay within the TSFS. Second, considering the unknown characteristic of the sampling interval, a Q-learning-based online estimation algorithm is developed to acquire the sampling probability, and an event-triggered mechanism is designed to reduce the computational burden of the estimation algorithm. Furthermore, the mapped stochastic input delay probability can be obtained. Third, to achieve stable tracking control of the abovementioned continuous-time TSFS with stochastic input delay, a predictive controller is designed to obtain the control law. Finally, the stability of SSDMPC is analyzed theoretically to ensure its reliability. Additionally, the effectiveness of SSDMPC is confirmed through numerical simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助ZZ采纳,获得30
1秒前
2秒前
小可爱发布了新的文献求助10
5秒前
CodeCraft应助星星醒醒采纳,获得10
5秒前
李健应助long11采纳,获得10
7秒前
orixero应助greenbiloba采纳,获得10
8秒前
丘比特应助丁真先生采纳,获得10
8秒前
微风完成签到,获得积分10
9秒前
14秒前
16秒前
17秒前
lhzm8290发布了新的文献求助10
18秒前
小山隹发布了新的文献求助10
18秒前
科研通AI5应助有魅力冰岚采纳,获得30
19秒前
丁真先生发布了新的文献求助10
21秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
天天快乐应助科研通管家采纳,获得10
22秒前
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
爆米花应助科研通管家采纳,获得10
22秒前
猪猪hero应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
慕青应助lkf采纳,获得10
23秒前
猪猪hero应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
搜集达人应助科研通管家采纳,获得10
23秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
23秒前
江璃完成签到,获得积分10
24秒前
24秒前
24秒前
Akim应助土豪的飞荷采纳,获得10
26秒前
26秒前
失眠惊蛰完成签到,获得积分10
30秒前
32秒前
32秒前
33秒前
Sjingjia完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Illustrated Veterinary Anatomical Nomenclature 2000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770207
求助须知:如何正确求助?哪些是违规求助? 3315298
关于积分的说明 10175159
捐赠科研通 3030309
什么是DOI,文献DOI怎么找? 1662801
邀请新用户注册赠送积分活动 795099
科研通“疑难数据库(出版商)”最低求助积分说明 756560