Multi-fault diagnosis of rolling mill main drive system based on UIO–DBO–SVM

支持向量机 控制工程 断层(地质) 计算机科学 控制理论(社会学) 工程类 汽车工程 人工智能 控制(管理) 地质学 地震学
作者
Ruicheng Zhang,Hao He,Weizheng Liang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241273784
摘要

In this paper, the fault diagnosis problem of the main drive system of rolling mill with multiple faults occurring at the same time is studied. Considering the internal equivalent current loop and nonlinear friction damping, the nonlinear mathematical model of the main drive system of rolling mill is established. A new fault diagnosis solution based on model residual and data classifier is proposed to solve the problem of complex fault in this system. In the first stage, the unknown input observer (UIO) is designed for system fault detection. The observer design of the system using the [Formula: see text] index will ensure the robustness of fault diagnosis. Lyapunov theory and linear matrix inequality are introduced to prove the convergence of the proposed observer. In the second stage, each set of coupled residual signals generated by the observer is treated as a separate subsequence and modeled and classified directly using a knowledge support vector machine (SVM). Aiming at the nonlinear separability and complexity of residual data set, dung beetle optimization (DBO) algorithm was used to optimize SVM model parameters. The numerical simulation results of 2030-mm cold rolling mill show that the UIO method can rapidly track the system at a speed of 0.2 seconds, the error of motor angular velocity estimation is 0.33% less than that of the extended state observer, and it is more robust. At the same time, the proposed DBO-SVM is compared with SVM, particle swarm optimization (PSO) algorithm-SVM, and jumping spider optimization algorithm (JSOA)-SVM, and the classification accuracy of the proposed DBO-SVM is 99.86%. This scheme not only provides a solution for the detection and classification of complex faults in the main drive of rolling mill, but also provides a new idea for the fault diagnosis of other complex mechanical equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖完成签到 ,获得积分10
2秒前
2秒前
藏锋完成签到 ,获得积分10
8秒前
酷炫觅双完成签到 ,获得积分10
11秒前
暖羊羊Y完成签到 ,获得积分10
11秒前
13秒前
傲娇书易应助davedavedave采纳,获得20
15秒前
哥哥发布了新的文献求助10
16秒前
潇湘完成签到 ,获得积分10
21秒前
所所应助哥哥采纳,获得10
23秒前
好好好完成签到 ,获得积分10
27秒前
puritan完成签到 ,获得积分10
28秒前
gincle完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
29秒前
瓜瓜瓜完成签到 ,获得积分10
32秒前
迈克老狼完成签到 ,获得积分10
39秒前
2025迷完成签到 ,获得积分10
43秒前
ycd完成签到,获得积分10
47秒前
洗衣液谢完成签到 ,获得积分10
48秒前
ypres完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
52秒前
zzz完成签到,获得积分10
55秒前
静静完成签到 ,获得积分10
55秒前
neversay4ever完成签到 ,获得积分10
59秒前
gnil完成签到,获得积分10
1分钟前
刘玲完成签到 ,获得积分10
1分钟前
ChatGPT发布了新的文献求助10
1分钟前
hi小豆完成签到 ,获得积分10
1分钟前
红毛兔完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
wuyyuan完成签到 ,获得积分10
1分钟前
小刘同学完成签到,获得积分10
1分钟前
clxgene完成签到,获得积分10
1分钟前
XXGG完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
star完成签到,获得积分10
1分钟前
小白加油完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高雍发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584832
求助须知:如何正确求助?哪些是违规求助? 4668720
关于积分的说明 14771614
捐赠科研通 4615564
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467575