Multi-fault diagnosis of rolling mill main drive system based on UIO–DBO–SVM

支持向量机 控制工程 断层(地质) 计算机科学 控制理论(社会学) 工程类 汽车工程 人工智能 控制(管理) 地质学 地震学
作者
Ruicheng Zhang,Hao He,Weizheng Liang
出处
期刊:Transactions of the Institute of Measurement and Control [SAGE]
标识
DOI:10.1177/01423312241273784
摘要

In this paper, the fault diagnosis problem of the main drive system of rolling mill with multiple faults occurring at the same time is studied. Considering the internal equivalent current loop and nonlinear friction damping, the nonlinear mathematical model of the main drive system of rolling mill is established. A new fault diagnosis solution based on model residual and data classifier is proposed to solve the problem of complex fault in this system. In the first stage, the unknown input observer (UIO) is designed for system fault detection. The observer design of the system using the [Formula: see text] index will ensure the robustness of fault diagnosis. Lyapunov theory and linear matrix inequality are introduced to prove the convergence of the proposed observer. In the second stage, each set of coupled residual signals generated by the observer is treated as a separate subsequence and modeled and classified directly using a knowledge support vector machine (SVM). Aiming at the nonlinear separability and complexity of residual data set, dung beetle optimization (DBO) algorithm was used to optimize SVM model parameters. The numerical simulation results of 2030-mm cold rolling mill show that the UIO method can rapidly track the system at a speed of 0.2 seconds, the error of motor angular velocity estimation is 0.33% less than that of the extended state observer, and it is more robust. At the same time, the proposed DBO-SVM is compared with SVM, particle swarm optimization (PSO) algorithm-SVM, and jumping spider optimization algorithm (JSOA)-SVM, and the classification accuracy of the proposed DBO-SVM is 99.86%. This scheme not only provides a solution for the detection and classification of complex faults in the main drive of rolling mill, but also provides a new idea for the fault diagnosis of other complex mechanical equipment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hzz发布了新的文献求助10
刚刚
刚刚
靓丽的海亦完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
xiapihpou完成签到,获得积分10
1秒前
万能图书馆应助美好斓采纳,获得10
1秒前
2秒前
lanzinuo完成签到,获得积分10
3秒前
小马甲应助Chaimengdi采纳,获得30
3秒前
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
淡定成风应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
fufu发布了新的文献求助10
5秒前
5秒前
tao完成签到,获得积分10
5秒前
可爱的函函应助123456采纳,获得10
6秒前
木子完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
llly完成签到,获得积分10
8秒前
Sikii完成签到 ,获得积分10
9秒前
9秒前
10秒前
hhh发布了新的文献求助10
10秒前
Dream完成签到,获得积分10
10秒前
hzz完成签到,获得积分10
10秒前
10秒前
shiring完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
COATING AND DRYINGDEEECTSTroubleshooting Operating Problems 600
涂布技术与设备手册 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5569832
求助须知:如何正确求助?哪些是违规求助? 4655331
关于积分的说明 14710954
捐赠科研通 4596258
什么是DOI,文献DOI怎么找? 2522334
邀请新用户注册赠送积分活动 1493439
关于科研通互助平台的介绍 1464032