沉降时间
同步(交流)
计算机科学
控制理论(社会学)
控制器(灌溉)
正确性
人工神经网络
反应扩散系统
扩散
理论(学习稳定性)
控制(管理)
数学
算法
控制工程
人工智能
数学分析
阶跃响应
工程类
机器学习
计算机网络
频道(广播)
物理
热力学
生物
农学
摘要
This paper focuses on the finite‐time synchronization issue for reaction‐diffusion competitive neural networks (RCNNs) with different time scales and time‐varying delays. To reduce the waste of network resources, a periodically intermittent control strategy is presented based on two time scales (short and long memory) and time‐varying delay. By constructing the Lyapunov–Krasovskii functional, with the help of Lyapunov stability theory and auxiliary inequality technique, the finite‐time synchronization can be guaranteed and the settling time is exactly estimated. Finally, an exhaustive numerical analysis is presented to illustrate the effectiveness of the controller and the correctness of theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI