The proactive and reactive mechanisms of learned spatial suppression

认知 任务(项目管理) 刺激(心理学) 独生子女 心理学 选择(遗传算法) 认知心理学 工作记忆 特征选择 计算机科学 人工智能 神经科学 生物 经济 管理 怀孕 遗传学
作者
Guang Zhao,Jiahuan Chen,Yupei Duan,Shiyi Li,Qiang Wang,Dongwei Li
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:34 (8) 被引量:1
标识
DOI:10.1093/cercor/bhae333
摘要

Abstract Selection history refers to the notion that previous allocations of attention or suppression have the potential to elicit lingering and enduring selection biases that are isolated from goal-driven or stimulus-driven attention. However, in the singleton detection mode task, manipulating the selection history of distractors cannot give rise to pure proactive inhibition. Therefore, we employed a combination of a working memory task and a feature search mode task, simultaneously recording cortical activity using EEG, to investigate the mechanisms of suppression guided by selection history. The results from event-related potential and reaction times showed an enhanced inhibitory performance when the distractor was presented at the high-probability location, along with instances where the target appeared at the high-probability location of distractors. These findings demonstrate that a generalized proactive inhibition bias is learned and processed independent of cognitive resources, which is supported by selection history. In contrast, reactive rejection toward the low-probability location was evident through the Pd component under varying cognitive resource conditions. Taken together, our findings indicated that participants learned proactive inhibition when the distractor was at the high-probability location, whereas reactive rejection was involved at low-probability location.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学牲发布了新的文献求助20
刚刚
sjh完成签到,获得积分10
刚刚
失眠成协发布了新的文献求助20
刚刚
慕青应助熊猫采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
cmr发布了新的文献求助10
1秒前
1秒前
2秒前
会发光的喷火龙完成签到,获得积分10
2秒前
友好寻真完成签到,获得积分10
2秒前
2秒前
善学以致用应助soso采纳,获得10
2秒前
2秒前
大可不必发布了新的文献求助10
3秒前
Chen完成签到 ,获得积分10
3秒前
鱼的宇宙完成签到,获得积分20
3秒前
isjj完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
友好寻真发布了新的文献求助10
5秒前
Xiaoduoyu发布了新的文献求助10
6秒前
6秒前
dong完成签到,获得积分10
6秒前
6秒前
豆浆油条完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
鱼的宇宙发布了新的文献求助10
8秒前
8秒前
白英发布了新的文献求助10
9秒前
TRY发布了新的文献求助10
9秒前
9秒前
jazz发布了新的文献求助10
9秒前
10秒前
liuz完成签到,获得积分10
10秒前
huskies完成签到,获得积分10
10秒前
辉腾完成签到,获得积分10
10秒前
zzzyc完成签到,获得积分10
11秒前
隐形曼青应助Nancy采纳,获得20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666053
求助须知:如何正确求助?哪些是违规求助? 4879128
关于积分的说明 15116083
捐赠科研通 4825220
什么是DOI,文献DOI怎么找? 2583153
邀请新用户注册赠送积分活动 1537198
关于科研通互助平台的介绍 1495512