This research highlights the underestimated significance of cigarette paper as evidence at crime scenes. The primary objective is to distinguish cigarette paper from similar-looking alternatives, addressing the first research objective. The second objective involves identifying cigarette paper brands using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and machine learning (ML) algorithms. Accurate differentiation of cigarette paper from normal paper is emphasized. ATR-FTIR spectroscopy, coupled with principal component analysis (PCA) for dimensionality reduction, is employed for brand identification. Among fifteen ML algorithms compared, the CatBoost classifier excels for both objectives. This research presents a non-destructive, effective method for studying cigarette paper, contributing valuable insights to crime scene investigations.