A Reinforcement Learning-Based Approach for Promoting Mental Health Using Multimodal Emotion Recognition

强化学习 情绪识别 心理学 钢筋 心理健康 模式治疗法 计算机科学 认知心理学 人机交互 人工智能 心理治疗师 社会心理学
作者
A.M.K. Pathirana,Dumidu Kasun Rajakaruna,Dharshana Kasthurirathna,Ajantha S. Atukorale,Rekha Aththidiye,Maheshi Yatipansalawa
标识
DOI:10.62411/faith.2024-22
摘要

This research aims to enhance mental well-being by addressing symptoms of anxiety and depression through a personalized, culturally specific multimodal emotion prediction system. It employs an emotionally aware Reinforcement Learning (RL) agent to suggest tailored Cognitive Behavioral Therapy (CBT) activities. The study focuses on developing precise, individualized emotion prediction models using facial expressions, vocal tones, and text, and integrates these models with the RL agent for emotionally aware CBT recommendations. The mHealth approach combines deep learning models with RL, achieving accuracies of 72% for facial expressions, 73% for vocal tones, and 86% for text, all fine-tuned for the Sri Lankan context. Validation through real-world use and user feedback consistently demonstrated that each model exceeds 70% accuracy, fulfilling the objective of precise emotion prediction. A weighted algorithm was introduced to refine the emotion prediction experience and personalize forecasts across the three modalities to enhance mental well-being. The RL-enabled agent suggests CBT activities approved by mental health professionals, tailored based on predicted emotions, and delivered through the same mHealth application. The effectiveness of these interventions was assessed using the DASS-21 questionnaire, revealing significant reductions in depression scores (from 21.08 to 13.54) and anxiety scores (from 19.85 to 10.46) in the study group compared to the control group. The study concludes that integrating multimodal emotion prediction models with RL-based CBT suggestions positively impacts mental well-being and contributes to personalized mental health interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
小马发布了新的文献求助10
1秒前
mzhnx发布了新的文献求助10
1秒前
NexusExplorer应助Angelos采纳,获得10
2秒前
mhr完成签到,获得积分10
2秒前
2秒前
华仔应助zhanglh采纳,获得30
2秒前
3秒前
Aurora发布了新的文献求助10
4秒前
4秒前
HYQ发布了新的文献求助30
5秒前
今后应助fjm采纳,获得10
5秒前
chen发布了新的文献求助10
6秒前
青玄发布了新的文献求助10
6秒前
软甜纱雾发布了新的文献求助10
6秒前
6秒前
香菜大王发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI2S应助高木同学采纳,获得10
7秒前
sunny发布了新的文献求助10
8秒前
小蘑菇应助文献高手采纳,获得10
8秒前
黄晓杰2024完成签到 ,获得积分10
8秒前
12秒前
12秒前
材料生发布了新的文献求助10
12秒前
12秒前
13秒前
14秒前
14秒前
隐形曼青应助杀出个黎明采纳,获得10
14秒前
chen完成签到,获得积分10
15秒前
小伙子完成签到,获得积分10
16秒前
Angelos发布了新的文献求助10
16秒前
17秒前
17秒前
牛芳草完成签到,获得积分10
17秒前
f111发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470685
求助须知:如何正确求助?哪些是违规求助? 3063674
关于积分的说明 9084950
捐赠科研通 2754196
什么是DOI,文献DOI怎么找? 1511311
邀请新用户注册赠送积分活动 698363
科研通“疑难数据库(出版商)”最低求助积分说明 698253