A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬彬完成签到,获得积分10
4秒前
zhuyabo发布了新的文献求助30
7秒前
10秒前
科研阿白完成签到,获得积分10
11秒前
FalMe关注了科研通微信公众号
12秒前
13秒前
hai发布了新的文献求助10
15秒前
17秒前
英俊的铭应助终止密码子采纳,获得10
21秒前
呀咪完成签到 ,获得积分10
21秒前
大椒完成签到 ,获得积分10
22秒前
FalMe发布了新的文献求助10
23秒前
25秒前
28秒前
完美世界应助科研通管家采纳,获得10
30秒前
上官若男应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
大龙哥886应助科研通管家采纳,获得10
30秒前
搜集达人应助科研通管家采纳,获得10
30秒前
shhoing应助科研通管家采纳,获得10
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
Mic应助科研通管家采纳,获得30
30秒前
彭于晏应助科研通管家采纳,获得10
30秒前
丘比特应助科研通管家采纳,获得40
30秒前
乐乐应助科研通管家采纳,获得10
31秒前
Mic应助科研通管家采纳,获得30
31秒前
今后应助科研通管家采纳,获得10
31秒前
Mic应助科研通管家采纳,获得30
31秒前
gexzygg应助油柑美式采纳,获得10
31秒前
31秒前
31秒前
Hello应助科研通管家采纳,获得10
31秒前
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
温暖的思柔完成签到,获得积分10
32秒前
32秒前
阳阳语晗完成签到,获得积分10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558090
求助须知:如何正确求助?哪些是违规求助? 4643045
关于积分的说明 14670407
捐赠科研通 4584521
什么是DOI,文献DOI怎么找? 2514920
邀请新用户注册赠送积分活动 1489054
关于科研通互助平台的介绍 1459712