A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
datang完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
李健应助朱锐熠采纳,获得10
2秒前
柔弱雅彤发布了新的文献求助10
2秒前
3秒前
友好灵松完成签到,获得积分10
3秒前
王一博完成签到,获得积分10
4秒前
4秒前
内向的惜芹完成签到,获得积分10
4秒前
5秒前
5秒前
俭朴静竹完成签到,获得积分10
5秒前
香蕉觅云应助abynn采纳,获得10
6秒前
6秒前
6秒前
zzzz完成签到,获得积分10
6秒前
不安的秋白完成签到,获得积分10
6秒前
7秒前
清茶完成签到,获得积分10
7秒前
Owen应助甜心采纳,获得10
8秒前
可爱的函函应助蛋堡采纳,获得10
8秒前
小蘑菇应助柔弱雅彤采纳,获得10
8秒前
8秒前
KYN发布了新的文献求助10
8秒前
科研通AI5应助称心的板栗采纳,获得10
9秒前
自然的早晨完成签到 ,获得积分20
9秒前
星星完成签到,获得积分20
9秒前
9秒前
10秒前
榴莲受众发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助大方的新筠采纳,获得10
10秒前
Ember完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
我真的不是robot完成签到,获得积分10
11秒前
12秒前
hymmm完成签到,获得积分10
12秒前
杨洋完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095640
求助须知:如何正确求助?哪些是违规求助? 4308615
关于积分的说明 13424929
捐赠科研通 4135474
什么是DOI,文献DOI怎么找? 2265586
邀请新用户注册赠送积分活动 1268936
关于科研通互助平台的介绍 1204972