A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木西完成签到 ,获得积分10
1秒前
1秒前
自由汝燕发布了新的文献求助10
1秒前
72323完成签到,获得积分10
4秒前
6秒前
淡定的日记本完成签到,获得积分20
6秒前
6秒前
6秒前
飞飞应助姜宇航采纳,获得10
6秒前
zgf完成签到 ,获得积分10
6秒前
淡然柚子发布了新的文献求助10
6秒前
lxm完成签到,获得积分20
7秒前
猪儿虫儿完成签到 ,获得积分10
8秒前
粗心的画板完成签到,获得积分10
9秒前
rebubu发布了新的文献求助10
9秒前
builda完成签到,获得积分20
10秒前
10秒前
10秒前
顺顺尼发布了新的文献求助10
11秒前
11秒前
lxm发布了新的文献求助10
11秒前
11秒前
12秒前
数学真的好难完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
hahahah完成签到,获得积分20
13秒前
栾花花发布了新的文献求助10
13秒前
一只特立独行的朱完成签到,获得积分10
13秒前
15秒前
15秒前
啦啦啦啦发布了新的文献求助10
16秒前
嘉悦发布了新的文献求助30
16秒前
浮游应助积极如天采纳,获得10
16秒前
16秒前
钟钟完成签到,获得积分10
16秒前
筑城院完成签到,获得积分10
16秒前
sapioe关注了科研通微信公众号
18秒前
builda发布了新的文献求助10
18秒前
19秒前
所所应助栾花花采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566