A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
洛尚发布了新的文献求助10
1秒前
ccc发布了新的文献求助10
1秒前
1秒前
潦草发布了新的文献求助10
2秒前
fighting完成签到,获得积分10
2秒前
2秒前
源源源完成签到 ,获得积分10
3秒前
HEIKU应助鲤鱼凛采纳,获得10
3秒前
luca完成签到,获得积分10
3秒前
3秒前
handsomecat完成签到,获得积分10
3秒前
4秒前
神勇的雅香应助gms采纳,获得10
4秒前
眯眯眼的衬衫应助cleva采纳,获得10
4秒前
激动的一手完成签到,获得积分10
4秒前
怕黑的海豚关注了科研通微信公众号
4秒前
艺玲发布了新的文献求助10
5秒前
irisjlj完成签到,获得积分10
6秒前
刘帅帅发布了新的文献求助10
6秒前
7秒前
7秒前
袅袅完成签到,获得积分10
7秒前
新的心跳发布了新的文献求助10
8秒前
wgx发布了新的文献求助10
8秒前
8秒前
DiviO_完成签到 ,获得积分10
8秒前
阳佟念真完成签到,获得积分10
8秒前
内向乞完成签到 ,获得积分10
10秒前
韭菜发布了新的文献求助10
10秒前
ludwig完成签到,获得积分10
10秒前
科研通AI5应助悦耳的冰枫采纳,获得10
11秒前
11秒前
12秒前
hqlran完成签到,获得积分10
12秒前
袅袅发布了新的文献求助10
12秒前
12秒前
爆米花应助小喵采纳,获得10
12秒前
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759