A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天才Kitty猫完成签到,获得积分10
1秒前
花花完成签到,获得积分20
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
呦呦完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
Mine_cherry应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
热心树叶应助科研通管家采纳,获得30
2秒前
慕青应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
大个应助麦穗采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
郁沧海发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得30
2秒前
orixero应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
2秒前
赵yy应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
SmallSun应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
啵啵发布了新的文献求助10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
寻道图强应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525447
求助须知:如何正确求助?哪些是违规求助? 4615623
关于积分的说明 14549371
捐赠科研通 4553692
什么是DOI,文献DOI怎么找? 2495468
邀请新用户注册赠送积分活动 1475991
关于科研通互助平台的介绍 1447742