A Multi-modal Modeling Framework for Cold-start Short-video Recommendation

情态动词 计算机科学 冷启动(汽车) 航空航天工程 工程类 化学 高分子化学
作者
Gaode Chen,Ruina Sun,Yuezihan Jiang,Jiangxia Cao,Q. T. Zhang,Jingjian Lin,Han Li,Kun Gai,Xinghua Zhang
标识
DOI:10.1145/3640457.3688098
摘要

Short video has witnessed rapid growth in the past few years in multimedia platforms. To ensure the freshness of the videos, platforms receive a large number of user-uploaded videos every day, making collaborative filtering-based recommender methods suffer from the item cold-start problem (e.g., the new-coming videos are difficult to compete with existing videos). Consequently, increasing efforts tackle the cold-start issue from the content perspective, focusing on modeling the multi-modal preferences of users, a fair way to compete with new-coming and existing videos. However, recent studies ignore the existing gap between multi-modal embedding extraction and user interest modeling as well as the discrepant intensities of user preferences for different modalities. In this paper, we propose M3CSR, a multi-modal modeling framework for cold-start short video recommendation. Specifically, we preprocess content-oriented multi-modal features for items and obtain trainable category IDs by performing clustering. In each modality, we combine modality-specific cluster ID embedding and the mapped original modality feature as modality-specific representation of the item to address the gap. Meanwhile, M3CSR measures the user modality-specific intensity based on the correlation between modality-specific interest and behavioral interest and employs pairwise loss to further decouple user multi-modal interests. Extensive experiments on four real-world datasets demonstrate the superiority of our proposed model. The framework has been deployed on a billion-user scale short video application and has shown improvements in various commercial metrics within cold-start scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ztx发布了新的文献求助10
刚刚
冰茉莉发布了新的文献求助50
1秒前
wanci应助Marciu33采纳,获得10
1秒前
坚强乌龟完成签到,获得积分20
1秒前
元谷雪发布了新的文献求助10
2秒前
大力飞扬发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
深情安青应助和谐谷蕊采纳,获得10
7秒前
专注的问寒应助法外狂徒采纳,获得100
7秒前
8秒前
呱呱蛙发布了新的文献求助10
9秒前
9秒前
啊呜发布了新的文献求助10
10秒前
努力发文不会累完成签到,获得积分10
10秒前
明亮的颖完成签到,获得积分10
10秒前
10秒前
lyy驳回了CodeCraft应助
11秒前
jsw发布了新的文献求助10
11秒前
11秒前
专注的问寒应助坚强乌龟采纳,获得20
12秒前
12秒前
12秒前
核动力驴发布了新的文献求助10
13秒前
1121发布了新的文献求助10
13秒前
宁燕完成签到,获得积分10
14秒前
mmmk完成签到,获得积分10
14秒前
英俊的铭应助jklwss采纳,获得10
14秒前
Annihilating完成签到,获得积分10
14秒前
zhj发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695511
求助须知:如何正确求助?哪些是违规求助? 5102149
关于积分的说明 15216311
捐赠科研通 4851790
什么是DOI,文献DOI怎么找? 2602705
邀请新用户注册赠送积分活动 1554389
关于科研通互助平台的介绍 1512420