Fasteners quantitative detection and lightweight deployment based on improved YOLOv8

计算机科学 瓶颈 紧固件 人工智能 分割 边缘检测 帧速率 计算机视觉 图像处理 嵌入式系统 结构工程 图像(数学) 工程类
作者
Tangbo Bai,Jiaming Duan,Ying Wang,Haochen Fu,Hao Zong
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (10)
标识
DOI:10.1063/5.0214188
摘要

Currently, research on on-board real-time quantitative detection of rail fasteners is few. Therefore, this paper proposes and validates an improved YOLOv8 based method for quantitative detection of rail fasteners, leveraging the capabilities of edge miniaturized artificial intelligence (AI) computing devices. First, the lightweight MobileNetV3 is employed as the backbone network for our model to increase detection speed, and the SA attention mechanism is integrated at the end of the backbone network to enhance the feature of the fasteners. Then the deformable convolution is introduced to reconstruct the bottleneck structure of the neck network, which can segment fasteners without compromising accuracy. Subsequently, the optimized network model is utilized on a Jetson AGX Xavier edge AI computing device by the TensorRT acceleration method. Segmentation results are then extracted at the pixel level for quantitative analysis of fastener breakage degree and deflection angle, so as to correct the detection results. Experimental results show that the size of the improved lightweight network volume is reduced by 28% compared to the original YOLOv8 model, and the frame rate on the edge AI computing device is lifted by 71.87%, i.e., 55 f/s. Furthermore, the model is refined based on quantitative analysis results, resulting in an mAP0.5 of 97.0%, and real-time quantitative detection of rail fasteners is realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikuya完成签到,获得积分20
刚刚
热心绿柏发布了新的文献求助10
刚刚
南昌黑人完成签到,获得积分10
1秒前
李爱国应助zhangpeng采纳,获得10
1秒前
顾矜应助上进生采纳,获得10
1秒前
宝宝完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
嘎嘎嘎嘎发布了新的文献求助10
3秒前
呼呼发布了新的文献求助10
4秒前
4秒前
nyzcc完成签到,获得积分10
4秒前
Leo完成签到,获得积分10
5秒前
5秒前
JamesPei应助李铭采纳,获得10
6秒前
闲思发布了新的文献求助10
7秒前
随行由心发布了新的文献求助10
7秒前
7秒前
xiarifeng123应助Ray采纳,获得10
7秒前
卡卡完成签到,获得积分10
8秒前
8秒前
昆仑山吴某完成签到 ,获得积分10
9秒前
快乐科研完成签到,获得积分10
10秒前
山奈发布了新的文献求助10
10秒前
malele完成签到,获得积分10
10秒前
子车茗应助科研小笨猪采纳,获得10
10秒前
Migue应助lhy采纳,获得10
10秒前
好远的梦发布了新的文献求助10
10秒前
东方捕完成签到 ,获得积分10
11秒前
Wendy1204发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
东邪西毒加任我行完成签到,获得积分10
13秒前
大方思柔完成签到 ,获得积分10
13秒前
胖虎啊发布了新的文献求助10
13秒前
zhouyou发布了新的文献求助30
15秒前
共享精神应助wjw采纳,获得10
16秒前
所所应助好远的梦采纳,获得10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156110
求助须知:如何正确求助?哪些是违规求助? 2807513
关于积分的说明 7873605
捐赠科研通 2465844
什么是DOI,文献DOI怎么找? 1312456
科研通“疑难数据库(出版商)”最低求助积分说明 630107
版权声明 601905