Fasteners quantitative detection and lightweight deployment based on improved YOLOv8

计算机科学 瓶颈 紧固件 人工智能 分割 边缘检测 帧速率 计算机视觉 图像处理 嵌入式系统 结构工程 图像(数学) 工程类
作者
Tangbo Bai,Jiaming Duan,Ying Wang,Haochen Fu,Hao Zong
出处
期刊:Review of Scientific Instruments [American Institute of Physics]
卷期号:95 (10)
标识
DOI:10.1063/5.0214188
摘要

Currently, research on on-board real-time quantitative detection of rail fasteners is few. Therefore, this paper proposes and validates an improved YOLOv8 based method for quantitative detection of rail fasteners, leveraging the capabilities of edge miniaturized artificial intelligence (AI) computing devices. First, the lightweight MobileNetV3 is employed as the backbone network for our model to increase detection speed, and the SA attention mechanism is integrated at the end of the backbone network to enhance the feature of the fasteners. Then the deformable convolution is introduced to reconstruct the bottleneck structure of the neck network, which can segment fasteners without compromising accuracy. Subsequently, the optimized network model is utilized on a Jetson AGX Xavier edge AI computing device by the TensorRT acceleration method. Segmentation results are then extracted at the pixel level for quantitative analysis of fastener breakage degree and deflection angle, so as to correct the detection results. Experimental results show that the size of the improved lightweight network volume is reduced by 28% compared to the original YOLOv8 model, and the frame rate on the edge AI computing device is lifted by 71.87%, i.e., 55 f/s. Furthermore, the model is refined based on quantitative analysis results, resulting in an mAP0.5 of 97.0%, and real-time quantitative detection of rail fasteners is realized.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
晴天完成签到,获得积分10
1秒前
坦率无剑完成签到,获得积分10
1秒前
2秒前
3秒前
HuangYu关注了科研通微信公众号
4秒前
firefly完成签到 ,获得积分10
4秒前
gjx完成签到 ,获得积分10
4秒前
yangshuai发布了新的文献求助10
6秒前
晴天发布了新的文献求助10
7秒前
carbonhan完成签到,获得积分10
9秒前
无极微光应助eden采纳,获得20
11秒前
KKK完成签到,获得积分20
11秒前
ming完成签到,获得积分10
12秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
Lny应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
Lny应助科研通管家采纳,获得10
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
JamesPei应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
pluto应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Criminology34应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
Lny应助科研通管家采纳,获得10
14秒前
pluto应助科研通管家采纳,获得10
14秒前
14秒前
HOAN应助科研通管家采纳,获得30
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978