已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning classification of new firearm injury encounters in the St Louis region: 2010-2020

医学 急诊科 接收机工作特性 毒物控制 急诊医学 金标准(测试) 机器学习 伤害预防 人工智能 计算机科学 内科学 精神科
作者
Rachel M. Ancona,Benjamin P. Cooper,NULL AUTHOR_ID,NULL AUTHOR_ID,Opeolu M Adeoye,Kristen L. Mueller
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
标识
DOI:10.1093/jamia/ocae173
摘要

Abstract Objectives To improve firearm injury encounter classification (new vs follow-up) using machine learning (ML) and compare our ML model to other common approaches. Materials and Methods This retrospective study used data from the St Louis region-wide hospital-based violence intervention program data repository (2010-2020). We randomly selected 500 patients with a firearm injury diagnosis for inclusion, with 808 total firearm injury encounters split (70/30) for training and testing. We trained a least absolute shrinkage and selection operator (LASSO) regression model with the following predictors: admission type, time between firearm injury visits, number of prior firearm injury emergency department (ED) visits, encounter type (ED or other), and diagnostic codes. Our gold standard for new firearm injury encounter classification was manual chart review. We then used our test data to compare the performance of our ML model to other commonly used approaches (proxy measures of ED visits and time between firearm injury encounters, and diagnostic code encounter type designation [initial vs subsequent or sequela]). Performance metrics included area under the curve (AUC), sensitivity, and specificity with 95% confidence intervals (CIs). Results The ML model had excellent discrimination (0.92, 0.88-0.96) with high sensitivity (0.95, 0.90-0.98) and specificity (0.89, 0.81-0.95). AUC was significantly higher than time-based outcomes, sensitivity was slightly (but not significantly) lower than other approaches, and specificity was higher than all other methods. Discussion ML successfully delineated new firearm injury encounters, outperforming other approaches in ruling out encounters for follow-up. Conclusion ML can be used to identify new firearm injury encounters and may be particularly useful in studies assessing re-injuries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鱼日发布了新的文献求助10
4秒前
汉堡包应助wu采纳,获得10
6秒前
CodeCraft应助科研通管家采纳,获得30
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
遥感小虫发布了新的文献求助10
7秒前
甲基醚完成签到 ,获得积分10
12秒前
巧克力大王完成签到 ,获得积分10
13秒前
鱼日完成签到,获得积分10
13秒前
华仔应助自行者采纳,获得10
16秒前
deeferf完成签到 ,获得积分10
21秒前
krajicek完成签到,获得积分10
22秒前
咖啡续命完成签到,获得积分10
22秒前
汉堡包应助乐乐乐乐乐乐采纳,获得10
23秒前
老薛完成签到,获得积分10
26秒前
wu发布了新的文献求助10
27秒前
qqq完成签到 ,获得积分10
29秒前
29秒前
32秒前
DreamRunner0410完成签到 ,获得积分10
34秒前
34秒前
南风发布了新的文献求助10
34秒前
天真咖啡豆完成签到,获得积分20
35秒前
wu发布了新的文献求助10
38秒前
39秒前
41秒前
拟好发布了新的文献求助10
41秒前
清森完成签到 ,获得积分10
43秒前
田柾国发布了新的文献求助10
45秒前
45秒前
45秒前
46秒前
48秒前
48秒前
wu发布了新的文献求助10
49秒前
招水若离完成签到,获得积分10
52秒前
Ava应助天真咖啡豆采纳,获得10
53秒前
传奇3应助乐乐乐乐乐乐采纳,获得10
54秒前
54秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164729
求助须知:如何正确求助?哪些是违规求助? 2815800
关于积分的说明 7910197
捐赠科研通 2475349
什么是DOI,文献DOI怎么找? 1318097
科研通“疑难数据库(出版商)”最低求助积分说明 632005
版权声明 602282