DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助jyyg采纳,获得30
刚刚
pcr163应助Angie采纳,获得50
1秒前
1秒前
小猴发布了新的文献求助10
1秒前
DRHSK发布了新的文献求助20
2秒前
Spinnin完成签到,获得积分10
3秒前
国足预备员完成签到 ,获得积分10
3秒前
ding应助piers采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
张德洁完成签到,获得积分10
4秒前
昭玥完成签到,获得积分10
5秒前
5秒前
5秒前
顾矜应助咸鱼采纳,获得10
5秒前
领导范儿应助小王采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得30
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
Ava应助xhDoc采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
常常完成签到,获得积分0
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
脂蛋白抗原应助杨老师采纳,获得10
5秒前
Orange应助后夜采纳,获得10
5秒前
5秒前
666JACS完成签到,获得积分20
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
chenhuiwan应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
科研豆包完成签到 ,获得积分10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
PP应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600326
求助须知:如何正确求助?哪些是违规求助? 4010520
关于积分的说明 12416659
捐赠科研通 3690261
什么是DOI,文献DOI怎么找? 2034228
邀请新用户注册赠送积分活动 1067656
科研通“疑难数据库(出版商)”最低求助积分说明 952475