DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忐忑的项链完成签到,获得积分10
1秒前
小菜完成签到,获得积分10
1秒前
1秒前
科研通AI6应助桶桶采纳,获得20
1秒前
研友_pnxBe8完成签到,获得积分10
1秒前
自然紫山完成签到,获得积分10
2秒前
sssss完成签到,获得积分10
2秒前
2秒前
康嘉伟完成签到,获得积分10
2秒前
科目三应助奋斗的凡采纳,获得10
2秒前
Dali应助xr采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
赫三问完成签到,获得积分10
4秒前
冷静完成签到,获得积分10
4秒前
ding应助rui采纳,获得10
4秒前
所所应助刘睿颖采纳,获得10
5秒前
pan发布了新的文献求助10
5秒前
5秒前
5秒前
小碎步发布了新的文献求助10
5秒前
活力的静曼完成签到,获得积分10
6秒前
烟花应助小马的可爱老婆采纳,获得10
6秒前
Aki_27完成签到,获得积分10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
领导范儿应助Luhh采纳,获得10
7秒前
难过以亦完成签到 ,获得积分10
7秒前
tiezhu发布了新的文献求助10
7秒前
lcy完成签到,获得积分10
7秒前
JamesPei应助li采纳,获得10
7秒前
Schmidt完成签到,获得积分10
7秒前
Tobeyleonard发布了新的文献求助10
8秒前
功夫熊猫发布了新的文献求助10
8秒前
8秒前
飘逸访蕊完成签到,获得积分20
8秒前
yang发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997