DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助深情海亦采纳,获得10
1秒前
zhong发布了新的文献求助10
1秒前
3秒前
djbj2022发布了新的文献求助10
3秒前
Jasper应助小马嘻嘻采纳,获得10
3秒前
3秒前
liyantong完成签到 ,获得积分10
4秒前
大个应助易烊千玺老婆采纳,获得10
4秒前
好好应助易烊千玺老婆采纳,获得10
4秒前
阿靖发布了新的文献求助30
4秒前
橙酒完成签到,获得积分10
4秒前
Sherlock完成签到,获得积分10
5秒前
5秒前
LizzyBronze发布了新的文献求助10
6秒前
6秒前
王会乐发布了新的文献求助60
7秒前
某某完成签到,获得积分10
7秒前
9秒前
9秒前
琢磨如君完成签到,获得积分10
10秒前
10秒前
轻松雁蓉发布了新的文献求助10
10秒前
11秒前
123关闭了123文献求助
11秒前
可爱的函函应助王阳洋采纳,获得10
12秒前
朱雅新发布了新的文献求助150
14秒前
深情海亦发布了新的文献求助10
14秒前
14秒前
乐空思应助勤奋的元风采纳,获得10
15秒前
15秒前
lwh完成签到,获得积分10
15秒前
16秒前
zhong发布了新的文献求助10
16秒前
16秒前
零零tube发布了新的文献求助20
16秒前
郝憨憨发布了新的文献求助10
17秒前
17秒前
yangcong发布了新的文献求助10
19秒前
曹士锋完成签到,获得积分20
19秒前
zzx完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039