DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LinHan发布了新的文献求助10
1秒前
秋风来临之时完成签到 ,获得积分10
2秒前
2秒前
Hello应助Rui采纳,获得100
2秒前
小木子发布了新的文献求助10
3秒前
3秒前
3秒前
SciGPT应助xibei采纳,获得10
3秒前
4秒前
小二郎应助科研通管家采纳,获得20
4秒前
xubobo发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
领导范儿应助科研通管家采纳,获得50
5秒前
qingmoheng应助科研通管家采纳,获得10
5秒前
NGU发布了新的文献求助10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
Zyc完成签到,获得积分10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
5秒前
iNk应助早睡采纳,获得20
5秒前
浮游应助科研通管家采纳,获得10
5秒前
wxyshare应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
华仔应助科研通管家采纳,获得30
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
香蕉觅云应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得20
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
wxyshare应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
The Antibodies, Vol. 2,3,4,5,6 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5461185
求助须知:如何正确求助?哪些是违规求助? 4566221
关于积分的说明 14304031
捐赠科研通 4491948
什么是DOI,文献DOI怎么找? 2460543
邀请新用户注册赠送积分活动 1449837
关于科研通互助平台的介绍 1425582