DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nana发布了新的文献求助10
刚刚
torch132完成签到,获得积分10
刚刚
1秒前
CodeCraft应助多发paper啊采纳,获得10
1秒前
刘多多发布了新的文献求助10
1秒前
2秒前
合适的毛豆完成签到,获得积分10
2秒前
科研雪完成签到,获得积分10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
阔达的无心应助飞鸟采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
幽默思雁应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Andrew完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
是木易呀应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
4秒前
萧水白应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
yangyang发布了新的文献求助10
5秒前
细心咖啡完成签到,获得积分10
5秒前
meng发布了新的文献求助10
5秒前
一出生就是美钕应助Zzz采纳,获得10
5秒前
bkagyin应助Zzz采纳,获得10
5秒前
科研通AI2S应助Zzz采纳,获得10
5秒前
深情安青应助Zzz采纳,获得10
5秒前
mhl11应助Zzz采纳,获得10
5秒前
淡然平灵完成签到,获得积分10
5秒前
zxj完成签到,获得积分10
5秒前
Hello应助初学者采纳,获得10
6秒前
6秒前
6秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303610
求助须知:如何正确求助?哪些是违规求助? 2937894
关于积分的说明 8485124
捐赠科研通 2611843
什么是DOI,文献DOI怎么找? 1426352
科研通“疑难数据库(出版商)”最低求助积分说明 662601
邀请新用户注册赠送积分活动 647126