DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助大力的安阳采纳,获得30
1秒前
悦耳冰萍完成签到,获得积分10
1秒前
生动不平发布了新的文献求助10
1秒前
1秒前
LittleWang完成签到,获得积分10
1秒前
biowming完成签到,获得积分10
2秒前
2秒前
MgZn发布了新的文献求助10
3秒前
Mingyue123完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
碧蓝之柔完成签到,获得积分10
4秒前
方方土应助简简子采纳,获得80
4秒前
狗狗发布了新的文献求助200
4秒前
5秒前
5秒前
6秒前
6秒前
LLL发布了新的文献求助10
6秒前
6秒前
派3发布了新的文献求助10
7秒前
7秒前
朱良宇发布了新的文献求助10
7秒前
8秒前
睡觉专业户关注了科研通微信公众号
8秒前
112233445566发布了新的文献求助10
8秒前
慢慢来发布了新的文献求助10
9秒前
草莓完成签到,获得积分10
9秒前
小巧的铅笔完成签到 ,获得积分10
9秒前
9秒前
BowieHuang应助小淮采纳,获得10
9秒前
zz发布了新的文献求助10
10秒前
10秒前
milkmore发布了新的文献求助10
10秒前
10秒前
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498