DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
英姑应助爱笑的香寒采纳,获得10
1秒前
我是老大应助fafafa采纳,获得30
2秒前
仙女爷爷完成签到,获得积分10
2秒前
宁好完成签到 ,获得积分10
2秒前
hhhh关注了科研通微信公众号
2秒前
万能图书馆应助lcc采纳,获得10
3秒前
tiger发布了新的文献求助20
3秒前
李勤_秦礼发布了新的文献求助10
4秒前
wfrg完成签到,获得积分10
4秒前
4秒前
5秒前
axlyjia发布了新的文献求助10
5秒前
5秒前
清秀谷菱完成签到 ,获得积分20
7秒前
量子星尘发布了新的文献求助10
7秒前
彭于晏应助march采纳,获得10
7秒前
10秒前
赵顺勇发布了新的文献求助10
10秒前
LX有理想完成签到 ,获得积分10
13秒前
14秒前
科研通AI6应助李勤_秦礼采纳,获得10
14秒前
ssr发布了新的文献求助10
16秒前
Skymi完成签到,获得积分10
16秒前
17秒前
little z发布了新的文献求助20
17秒前
小企企发布了新的文献求助10
18秒前
20秒前
20秒前
迷路雨寒应助march采纳,获得20
20秒前
21秒前
hhhh发布了新的文献求助30
23秒前
dragon发布了新的文献求助10
24秒前
久ling完成签到 ,获得积分10
24秒前
pzh关闭了pzh文献求助
25秒前
26秒前
小二郎应助赵顺勇采纳,获得10
26秒前
26秒前
高挑的凤灵完成签到 ,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5680387
求助须知:如何正确求助?哪些是违规求助? 4998746
关于积分的说明 15172902
捐赠科研通 4840349
什么是DOI,文献DOI怎么找? 2593972
邀请新用户注册赠送积分活动 1546968
关于科研通互助平台的介绍 1504989