DGR-MIL: Exploring Diverse Global Representation in Multiple Instance Learning for Whole Slide Image Classification

代表(政治) 图像(数学) 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 机器学习 政治学 政治 法学
作者
Wenhui Zhu,Xiwen Chen,Peijie Qiu,Aristeidis Sotiras,Abolfazl Razi,Yalin Wang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.03575
摘要

Multiple instance learning (MIL) stands as a powerful approach in weakly supervised learning, regularly employed in histological whole slide image (WSI) classification for detecting tumorous lesions. However, existing mainstream MIL methods focus on modeling correlation between instances while overlooking the inherent diversity among instances. However, few MIL methods have aimed at diversity modeling, which empirically show inferior performance but with a high computational cost. To bridge this gap, we propose a novel MIL aggregation method based on diverse global representation (DGR-MIL), by modeling diversity among instances through a set of global vectors that serve as a summary of all instances. First, we turn the instance correlation into the similarity between instance embeddings and the predefined global vectors through a cross-attention mechanism. This stems from the fact that similar instance embeddings typically would result in a higher correlation with a certain global vector. Second, we propose two mechanisms to enforce the diversity among the global vectors to be more descriptive of the entire bag: (i) positive instance alignment and (ii) a novel, efficient, and theoretically guaranteed diversification learning paradigm. Specifically, the positive instance alignment module encourages the global vectors to align with the center of positive instances (e.g., instances containing tumors in WSI). To further diversify the global representations, we propose a novel diversification learning paradigm leveraging the determinantal point process. The proposed model outperforms the state-of-the-art MIL aggregation models by a substantial margin on the CAMELYON-16 and the TCGA-lung cancer datasets. The code is available at \url{https://github.com/ChongQingNoSubway/DGR-MIL}.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
任虎完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
学术渣完成签到,获得积分10
3秒前
酷波er应助coldsky采纳,获得10
3秒前
俏皮的毛巾完成签到 ,获得积分10
4秒前
pcyang完成签到,获得积分10
4秒前
常若冰完成签到,获得积分10
4秒前
枫竹完成签到,获得积分10
5秒前
香蕉觅云应助自信的冬日采纳,获得10
5秒前
6秒前
7秒前
zhan完成签到,获得积分10
7秒前
7秒前
摩登兄弟发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
wanwan应助学术渣采纳,获得10
8秒前
Chenly完成签到,获得积分10
9秒前
LWJ关闭了LWJ文献求助
9秒前
敏感的咖啡豆完成签到 ,获得积分10
10秒前
huang完成签到,获得积分10
10秒前
saflgf完成签到,获得积分10
12秒前
12秒前
赘婿应助pokexuejiao采纳,获得20
12秒前
caicai发布了新的文献求助10
13秒前
没座完成签到,获得积分10
14秒前
ad发布了新的文献求助10
15秒前
aaaa发布了新的文献求助10
15秒前
zho发布了新的文献求助10
17秒前
向日葵完成签到,获得积分10
18秒前
123完成签到,获得积分10
19秒前
21秒前
snowy_owl完成签到,获得积分10
22秒前
Native007完成签到,获得积分10
22秒前
22秒前
zho完成签到,获得积分10
24秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425